Package index
-
bvhar
bvhar-package
- bvhar: Bayesian Vector Heterogeneous Autoregressive Modeling
-
var_lm()
print(<varlse>)
logLik(<varlse>)
AIC(<varlse>)
BIC(<varlse>)
is.varlse()
is.bvharmod()
knit_print(<varlse>)
- Fitting Vector Autoregressive Model of Order p Model
-
vhar_lm()
print(<vharlse>)
logLik(<vharlse>)
AIC(<vharlse>)
BIC(<vharlse>)
is.vharlse()
knit_print(<vharlse>)
- Fitting Vector Heterogeneous Autoregressive Model
-
VARtoVMA()
- Convert VAR to VMA(infinite)
-
VHARtoVMA()
- Convert VHAR to VMA(infinite)
-
summary(<varlse>)
print(<summary.varlse>)
knit_print(<summary.varlse>)
- Summarizing Vector Autoregressive Model
-
summary(<vharlse>)
print(<summary.vharlse>)
knit_print(<summary.vharlse>)
- Summarizing Vector HAR Model
-
set_bvar()
set_bvar_flat()
set_bvhar()
set_weight_bvhar()
print(<bvharspec>)
is.bvharspec()
knit_print(<bvharspec>)
- Hyperparameters for Bayesian Models
-
set_ssvs()
print(<ssvsinput>)
is.ssvsinput()
knit_print(<ssvsinput>)
- Stochastic Search Variable Selection (SSVS) Hyperparameter for Coefficients Matrix and Cholesky Factor
-
set_lambda()
set_psi()
print(<bvharpriorspec>)
is.bvharpriorspec()
knit_print(<bvharpriorspec>)
- Hyperpriors for Bayesian Models
-
set_horseshoe()
print(<horseshoespec>)
is.horseshoespec()
knit_print(<horseshoespec>)
- Horseshoe Prior Specification
-
set_ng()
print(<ngspec>)
is.ngspec()
experimental - Normal-Gamma Hyperparameter for Coefficients and Contemporaneous Coefficients
-
set_dl()
print(<dlspec>)
is.dlspec()
experimental - Dirichlet-Laplace Hyperparameter for Coefficients and Contemporaneous Coefficients
-
set_gdp()
is.gdpspec()
experimental - Generalized Double Pareto Shrinkage Hyperparameters for Coefficients and Contemporaneous Coefficients
-
set_ldlt()
set_sv()
print(<covspec>)
is.covspec()
is.svspec()
is.ldltspec()
experimental - Covariance Matrix Prior Specification
-
set_intercept()
print(<interceptspec>)
is.interceptspec()
knit_print(<interceptspec>)
- Prior for Constant Term
-
var_bayes()
print(<bvarsv>)
print(<bvarldlt>)
knit_print(<bvarsv>)
knit_print(<bvarldlt>)
maturing - Fitting Bayesian VAR with Coefficient and Covariance Prior
-
bvar_minnesota()
print(<bvarmn>)
print(<bvarhm>)
logLik(<bvarmn>)
AIC(<bvarmn>)
BIC(<bvarmn>)
is.bvarmn()
knit_print(<bvarmn>)
knit_print(<bvarhm>)
- Fitting Bayesian VAR(p) of Minnesota Prior
-
bvar_flat()
print(<bvarflat>)
logLik(<bvarflat>)
AIC(<bvarflat>)
BIC(<bvarflat>)
is.bvarflat()
knit_print(<bvarflat>)
- Fitting Bayesian VAR(p) of Flat Prior
-
vhar_bayes()
print(<bvharsv>)
print(<bvharldlt>)
knit_print(<bvharsv>)
knit_print(<bvharldlt>)
maturing - Fitting Bayesian VHAR with Coefficient and Covariance Prior
-
bvhar_minnesota()
print(<bvharmn>)
print(<bvharhm>)
logLik(<bvharmn>)
AIC(<bvharmn>)
BIC(<bvharmn>)
is.bvharmn()
knit_print(<bvharmn>)
knit_print(<bvharhm>)
- Fitting Bayesian VHAR of Minnesota Prior
-
summary(<normaliw>)
print(<summary.normaliw>)
knit_print(<summary.normaliw>)
- Summarizing Bayesian Multivariate Time Series Model
-
print(<summary.bvharsp>)
knit_print(<summary.bvharsp>)
summary(<ssvsmod>)
summary(<hsmod>)
summary(<ngmod>)
- Summarizing BVAR and BVHAR with Shrinkage Priors
-
predict(<varlse>)
predict(<vharlse>)
predict(<bvarmn>)
predict(<bvharmn>)
predict(<bvarflat>)
predict(<bvarldlt>)
predict(<bvharldlt>)
predict(<bvarsv>)
predict(<bvharsv>)
print(<predbvhar>)
is.predbvhar()
knit_print(<predbvhar>)
- Forecasting Multivariate Time Series
-
divide_ts()
- Split a Time Series Dataset into Train-Test Set
-
forecast_roll()
print(<bvharcv>)
is.bvharcv()
knit_print(<bvharcv>)
- Out-of-sample Forecasting based on Rolling Window
-
forecast_expand()
- Out-of-sample Forecasting based on Expanding Window
-
print(<bvharirf>)
irf()
is.bvharirf()
knit_print(<bvharirf>)
- Impulse Response Analysis
-
spillover()
print(<bvharspillover>)
knit_print(<bvharspillover>)
- h-step ahead Normalized Spillover
-
dynamic_spillover()
print(<bvhardynsp>)
knit_print(<bvhardynsp>)
- Dynamic Spillover
-
mse()
- Evaluate the Model Based on MSE (Mean Square Error)
-
mae()
- Evaluate the Model Based on MAE (Mean Absolute Error)
-
mape()
- Evaluate the Model Based on MAPE (Mean Absolute Percentage Error)
-
mase()
- Evaluate the Model Based on MASE (Mean Absolute Scaled Error)
-
mrae()
- Evaluate the Model Based on MRAE (Mean Relative Absolute Error)
-
alpl()
- Evaluate the Density Forecast Based on Average Log Predictive Likelihood (APLP)
-
relmae()
- Evaluate the Model Based on RelMAE (Relative MAE)
-
rmsfe()
- Evaluate the Model Based on RMSFE
-
rmafe()
- Evaluate the Model Based on RMAFE
-
rmape()
- Evaluate the Model Based on RMAPE (Relative MAPE)
-
rmase()
- Evaluate the Model Based on RMASE (Relative MASE)
-
conf_fdr()
- Evaluate the Sparsity Estimation Based on FDR
-
conf_fnr()
- Evaluate the Sparsity Estimation Based on FNR
-
conf_fscore()
- Evaluate the Sparsity Estimation Based on F1 Score
-
conf_prec()
- Evaluate the Sparsity Estimation Based on Precision
-
conf_recall()
- Evaluate the Sparsity Estimation Based on Recall
-
confusion()
- Evaluate the Sparsity Estimation Based on Confusion Matrix
-
fromse()
- Evaluate the Estimation Based on Frobenius Norm
-
spne()
- Evaluate the Estimation Based on Spectral Norm Error
-
relspne()
- Evaluate the Estimation Based on Relative Spectral Norm Error
-
compute_logml()
- Extracting Log of Marginal Likelihood
-
choose_bvar()
choose_bvhar()
print(<bvharemp>)
is.bvharemp()
knit_print(<bvharemp>)
- Finding the Set of Hyperparameters of Individual Bayesian Model
-
bound_bvhar()
print(<boundbvharemp>)
is.boundbvharemp()
knit_print(<boundbvharemp>)
experimental - Setting Empirical Bayes Optimization Bounds
-
choose_bayes()
experimental - Finding the Set of Hyperparameters of Bayesian Model
-
FPE()
- Final Prediction Error Criterion
-
HQ()
- Hannan-Quinn Criterion
-
choose_var()
- Choose the Best VAR based on Information Criteria
-
compute_dic()
- Deviance Information Criterion of Multivariate Time Series Model
-
autoplot(<normaliw>)
- Residual Plot for Minnesota Prior VAR Model
-
autoplot(<summary.normaliw>)
- Density Plot for Minnesota Prior VAR Model
-
autoplot(<predbvhar>)
autolayer(<predbvhar>)
- Plot Forecast Result
-
geom_eval()
- Adding Test Data Layer
-
gg_loss()
- Compare Lists of Models
-
autoplot(<bvharirf>)
- Plot Impulse Responses
-
autoplot(<bvharsp>)
- Plot the Result of BVAR and BVHAR MCMC
-
autoplot(<summary.bvharsp>)
- Plot the Heatmap of SSVS Coefficients
-
autoplot(<bvhardynsp>)
- Dynamic Spillover Indices Plot
-
sim_var()
- Generate Multivariate Time Series Process Following VAR(p)
-
sim_vhar()
- Generate Multivariate Time Series Process Following VAR(p)
-
sim_mncoef()
- Generate Minnesota BVAR Parameters
-
sim_mnvhar_coef()
- Generate Minnesota BVAR Parameters
-
sim_mnormal()
- Generate Multivariate Normal Random Vector
-
sim_matgaussian()
- Generate Matrix Normal Random Matrix
-
sim_iw()
- Generate Inverse-Wishart Random Matrix
-
sim_mniw()
- Generate Normal-IW Random Family
-
sim_mvt()
- Generate Multivariate t Random Vector
-
sim_gig()
- Generate Generalized Inverse Gaussian Distribution
-
etf_vix
- CBOE ETF Volatility Index Dataset
-
stableroot()
- Roots of characteristic polynomial
-
is.stable()
- Stability of the process
-
coef(<varlse>)
coef(<vharlse>)
coef(<bvarmn>)
coef(<bvarflat>)
coef(<bvharmn>)
coef(<bvharsp>)
coef(<summary.bvharsp>)
- Coefficient Matrix of Multivariate Time Series Models
-
residuals(<varlse>)
residuals(<vharlse>)
residuals(<bvarmn>)
residuals(<bvarflat>)
residuals(<bvharmn>)
- Residual Matrix from Multivariate Time Series Models
-
fitted(<varlse>)
fitted(<vharlse>)
fitted(<bvarmn>)
fitted(<bvarflat>)
fitted(<bvharmn>)
- Fitted Matrix from Multivariate Time Series Models