This function computes MRAE given prediction result versus evaluation set.
     
    
    Usage
    mrae(x, pred_bench, y, ...)
# S3 method for class 'predbvhar'
mrae(x, pred_bench, y, ...)
# S3 method for class 'bvharcv'
mrae(x, pred_bench, y, ...)
 
    
    Arguments
- x
- Forecasting object to use 
- pred_bench
- The same forecasting object from benchmark model 
- y
- Test data to be compared. should be the same format with the train data. 
- ...
- not used 
 
    
    Value
    MRAE vector corresponding to each variable.
     
    
    Details
    Let \(e_t = y_t - \hat{y}_t\).
MRAE implements benchmark model as scaling method.
Relative error is defined by
$$r_t = \frac{e_t}{e_t^{\ast}}$$
where \(e_t^\ast\) is the error from the benchmark method.
Then
$$MRAE = mean(\lvert r_t \rvert)$$
     
    
    References
    Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679-688.