Skip to contents

Set initial hyperparameters and parameter before starting Gibbs sampler for Horseshoe prior.

Usage

set_horseshoe(local_sparsity = 1, group_sparsity = 1, global_sparsity = 1)

# S3 method for class 'horseshoespec'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

is.horseshoespec(x)

# S3 method for class 'horseshoespec'
knit_print(x, ...)

Arguments

local_sparsity

Initial local shrinkage hyperparameters

group_sparsity

Initial group shrinkage hyperparameters

global_sparsity

Initial global shrinkage hyperparameter

x

Any object

digits

digit option to print

...

not used

Details

Set horseshoe prior initialization for VAR family.

  • local_sparsity: Initial local shrinkage

  • group_sparsity: Initial group shrinkage

  • global_sparsity: Initial global shrinkage

In this package, horseshoe prior model is estimated by Gibbs sampling, initial means initial values for that gibbs sampler.

References

Carvalho, C. M., Polson, N. G., & Scott, J. G. (2010). The horseshoe estimator for sparse signals. Biometrika, 97(2), 465-480.

Makalic, E., & Schmidt, D. F. (2016). A Simple Sampler for the Horseshoe Estimator. IEEE Signal Processing Letters, 23(1), 179-182.