Hyperpriors for Bayesian Models
Source:R/hyperparam.R
, R/print-bvharspec.R
, R/member.R
set_lambda.Rd
Set hyperpriors of Bayesian VAR and VHAR models.
Usage
set_lambda(
mode = 0.2,
sd = 0.4,
param = NULL,
lower = 1e-05,
upper = 3,
grid_size = 100L
)
set_psi(shape = 4e-04, scale = 4e-04, lower = 1e-05, upper = 3)
# S3 method for class 'bvharpriorspec'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.bvharpriorspec(x)
# S3 method for class 'bvharpriorspec'
knit_print(x, ...)
Arguments
- mode
Mode of Gamma distribution. By default,
.2
.- sd
Standard deviation of Gamma distribution. By default,
.4
.- param
Shape and rate of Gamma distribution, in the form of
c(shape, rate)
. If specified, ignoremode
andsd
.- lower
Lower bound for
stats::optim()
. By default,1e-5
.- upper
Upper bound for
stats::optim()
. By default,3
.- grid_size
Griddy gibbs grid size for lag scaling
- shape
Shape of Inverse Gamma distribution. By default,
(.02)^2
.- scale
Scale of Inverse Gamma distribution. By default,
(.02)^2
.- x
Any object
- digits
digit option to print
- ...
not used
Details
In addition to Normal-IW priors set_bvar()
, set_bvhar()
, and set_weight_bvhar()
,
these functions give hierarchical structure to the model.
set_lambda()
specifies hyperprior for \(\lambda\) (lambda
), which is Gamma distribution.set_psi()
specifies hyperprior for \(\psi / (\nu_0 - k - 1) = \sigma^2\) (sigma
), which is Inverse gamma distribution.
The following set of (mode, sd)
are recommended by Sims and Zha (1998) for set_lambda()
.
(mode = .2, sd = .4)
: default(mode = 1, sd = 1)
Giannone et al. (2015) suggested data-based selection for set_psi()
.
It chooses (0.02)^2 based on its empirical data set.
References
Giannone, D., Lenza, M., & Primiceri, G. E. (2015). Prior Selection for Vector Autoregressions. Review of Economics and Statistics, 97(2).
Examples
# Hirearchical BVAR specification------------------------
set_bvar(
sigma = set_psi(shape = 4e-4, scale = 4e-4),
lambda = set_lambda(mode = .2, sd = .4),
delta = rep(1, 3),
eps = 1e-04 # eps = 1e-04
)
#> Model Specification for BVAR
#>
#> Parameters: Coefficent matrice and Covariance matrix
#> Prior: MN_Hierarchical
#> ========================================================
#>
#> Setting for 'sigma':
#> Hyperprior specification for psi
#>
#> [1] psi ~ Inv-Gamma(shape = 4e-04, scale =4e-04)
#>
#> Setting for 'lambda':
#> Hyperprior specification for lambda
#>
#> [1] lambda ~ Gamma(shape = 1.64038820320221, rate =3.20194101601104)
#>
#> Setting for 'delta':
#> [1] 1 1 1
#>
#> Setting for 'eps':
#> [1] 1e-04
#>
#> Setting for 'hierarchical':
#> [1] TRUE
#>