This function generates parameters of BVAR with Minnesota prior.
Usage
sim_mncoef(p, bayes_spec = set_bvar(), full = TRUE)
Arguments
- p
VAR lag
- bayes_spec
A BVAR model specification by
set_bvar()
.- full
Generate variance matrix from IW (default:
TRUE
) or not (FALSE
)?
Value
List with the following component.
- coefficients
BVAR coefficient (MN)
- covmat
BVAR variance (IW or diagonal matrix of
sigma
ofbayes_spec
)
Details
Implementing dummy observation constructions,
Bańbura et al. (2010) sets Normal-IW prior.
$$A \mid \Sigma_e \sim MN(A_0, \Omega_0, \Sigma_e)$$
$$\Sigma_e \sim IW(S_0, \alpha_0)$$
If full = FALSE
, the result of \(\Sigma_e\) is the same as input (diag(sigma)
).
References
Bańbura, M., Giannone, D., & Reichlin, L. (2010). Large Bayesian vector auto regressions. Journal of Applied Econometrics, 25(1).
Karlsson, S. (2013). Chapter 15 Forecasting with Bayesian Vector Autoregression. Handbook of Economic Forecasting, 2, 791-897.
Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.
See also
set_bvar()
to specify the hyperparameters of Minnesota prior.
Examples
# Generate (A, Sigma)
# BVAR(p = 2)
# sigma: 1, 1, 1
# lambda: .1
# delta: .1, .1, .1
# epsilon: 1e-04
set.seed(1)
sim_mncoef(
p = 2,
bayes_spec = set_bvar(
sigma = rep(1, 3),
lambda = .1,
delta = rep(.1, 3),
eps = 1e-04
),
full = TRUE
)
#> $coefficients
#> [,1] [,2] [,3]
#> [1,] 0.081071630 0.002721103 0.092414563
#> [2,] 0.049041658 0.062491732 -0.032011373
#> [3,] -0.018590620 -0.008312152 0.066508409
#> [4,] 0.008099504 -0.017944600 0.007603526
#> [5,] -0.039740346 0.001970018 -0.017502085
#> [6,] 0.004281752 0.014382071 0.007386941
#>
#> $covmat
#> [,1] [,2] [,3]
#> [1,] 0.41248285 -0.06400052 0.24882667
#> [2,] -0.06400052 0.14995663 0.01758338
#> [3,] 0.24882667 0.01758338 0.35941383
#>