This function generates parameters of BVAR with Minnesota prior.
Usage
sim_mncoef(p, bayes_spec = set_bvar(), full = TRUE)
Arguments
- p
VAR lag
- bayes_spec
A BVAR model specification by
set_bvar()
.- full
Generate variance matrix from IW (default:
TRUE
) or not (FALSE
)?
Value
List with the following component.
- coefficients
BVAR coefficient (MN)
- covmat
BVAR variance (IW or diagonal matrix of
sigma
ofbayes_spec
)
Details
Implementing dummy observation constructions,
Bańbura et al. (2010) sets Normal-IW prior.
$$A \mid \Sigma_e \sim MN(A_0, \Omega_0, \Sigma_e)$$
$$\Sigma_e \sim IW(S_0, \alpha_0)$$
If full = FALSE
, the result of \(\Sigma_e\) is the same as input (diag(sigma)
).
References
Bańbura, M., Giannone, D., & Reichlin, L. (2010). Large Bayesian vector auto regressions. Journal of Applied Econometrics, 25(1).
Karlsson, S. (2013). Chapter 15 Forecasting with Bayesian Vector Autoregression. Handbook of Economic Forecasting, 2, 791-897.
Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.
See also
set_bvar()
to specify the hyperparameters of Minnesota prior.
Examples
# Generate (A, Sigma)
# BVAR(p = 2)
# sigma: 1, 1, 1
# lambda: .1
# delta: .1, .1, .1
# epsilon: 1e-04
set.seed(1)
sim_mncoef(
p = 2,
bayes_spec = set_bvar(
sigma = rep(1, 3),
lambda = .1,
delta = rep(.1, 3),
eps = 1e-04
),
full = TRUE
)
#> $coefficients
#> [,1] [,2] [,3]
#> [1,] 0.1760184710 -0.016532893 -0.06514725
#> [2,] 0.1556541344 0.036163539 -0.16746242
#> [3,] -0.2280271782 0.157961996 0.34810835
#> [4,] -0.0008334809 0.018352564 0.05185982
#> [5,] 0.0305742650 0.002010504 0.02197815
#> [6,] 0.0038386336 -0.039734185 -0.02366305
#>
#> $covmat
#> [,1] [,2] [,3]
#> [1,] 1.0600918 -0.5356457 -0.9412103
#> [2,] -0.5356457 0.4150287 0.6410763
#> [3,] -0.9412103 0.6410763 1.5794713
#>