This function samples one matrix IW matrix.
Details
Consider \(\Sigma \sim IW(\Psi, \nu)\).
- Upper triangular Bartlett decomposition: k x k matrix \(Q = [q_{ij}]\) upper triangular with - \(q_{ii}^2 \chi_{\nu - i + 1}^2\) 
- \(q_{ij} \sim N(0, 1)\) with i < j (upper triangular) 
 
- Lower triangular Cholesky decomposition: \(\Psi = L L^T\) 
- \(A = L (Q^{-1})^T\) 
- \(\Sigma = A A^T \sim IW(\Psi, \nu)\) 
