This function samples n x muti-dimensional normal random matrix.
     
    
    Usage
    sim_mnormal(
  num_sim,
  mu = rep(0, 5),
  sig = diag(5),
  method = c("eigen", "chol")
)
 
    
    Arguments
- num_sim
- Number to generate process 
- mu
- Mean vector 
- sig
- Variance matrix 
- method
- Method to compute \(\Sigma^{1/2}\).
Choose between - eigen(spectral decomposition) and- chol(cholesky decomposition).
By default,- eigen.
 
 
    
    
    Details
    Consider \(x_1, \ldots, x_n \sim N_m (\mu, \Sigma)\).
- Lower triangular Cholesky decomposition: \(\Sigma = L L^T\) 
- Standard normal generation: \(Z_{i1}, Z_{in} \stackrel{iid}{\sim} N(0, 1)\) 
- \(Z_i = (Z_{i1}, \ldots, Z_{in})^T\) 
- \(X_i = L Z_i + \mu\)