Skip to contents

This function fits BVAR(p) with Minnesota prior.

Usage

bvar_minnesota(
  y,
  p = 1,
  num_chains = 1,
  num_iter = 1000,
  num_burn = floor(num_iter/2),
  thinning = 1,
  bayes_spec = set_bvar(),
  scale_variance = 0.05,
  include_mean = TRUE,
  parallel = list(),
  verbose = FALSE,
  num_thread = 1
)

# S3 method for class 'bvarmn'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

# S3 method for class 'bvarhm'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

# S3 method for class 'bvarmn'
logLik(object, ...)

# S3 method for class 'bvarmn'
AIC(object, ...)

# S3 method for class 'bvarmn'
BIC(object, ...)

is.bvarmn(x)

# S3 method for class 'bvarmn'
knit_print(x, ...)

# S3 method for class 'bvarhm'
knit_print(x, ...)

Arguments

y

Time series data of which columns indicate the variables

p

VAR lag (Default: 1)

num_chains

Number of MCMC chains

num_iter

MCMC iteration number

num_burn

Number of burn-in (warm-up). Half of the iteration is the default choice.

thinning

Thinning every thinning-th iteration

bayes_spec

A BVAR model specification by set_bvar().

scale_variance

Proposal distribution scaling constant to adjust an acceptance rate

include_mean

Add constant term (Default: TRUE) or not (FALSE)

parallel

List the same argument of optimParallel::optimParallel(). By default, this is empty, and the function does not execute parallel computation.

verbose

Print the progress bar in the console. By default, FALSE.

num_thread

Number of threads

x

Any object

digits

digit option to print

...

not used

object

A bvarmn object

Value

bvar_minnesota() returns an object bvarmn class. It is a list with the following components:

coefficients

Posterior Mean

fitted.values

Fitted values

residuals

Residuals

mn_mean

Posterior mean matrix of Matrix Normal distribution

mn_prec

Posterior precision matrix of Matrix Normal distribution

iw_scale

Posterior scale matrix of posterior inverse-Wishart distribution

iw_shape

Posterior shape of inverse-Wishart distribution (\(alpha_0\) - obs + 2). \(\alpha_0\): nrow(Dummy observation) - k

df

Numer of Coefficients: mp + 1 or mp

m

Dimension of the time series

obs

Sample size used when training = totobs - p

prior_mean

Prior mean matrix of Matrix Normal distribution: \(A_0\)

prior_precision

Prior precision matrix of Matrix Normal distribution: \(\Omega_0^{-1}\)

prior_scale

Prior scale matrix of inverse-Wishart distribution: \(S_0\)

prior_shape

Prior shape of inverse-Wishart distribution: \(\alpha_0\)

y0

\(Y_0\)

design

\(X_0\)

p

Lag of VAR

totobs

Total number of the observation

type

include constant term (const) or not (none)

y

Raw input (matrix)

call

Matched call

process

Process string in the bayes_spec: BVAR_Minnesota

spec

Model specification (bvharspec)

It is also normaliw and bvharmod class.

Details

Minnesota prior gives prior to parameters \(A\) (VAR matrices) and \(\Sigma_e\) (residual covariance).

$$A \mid \Sigma_e \sim MN(A_0, \Omega_0, \Sigma_e)$$ $$\Sigma_e \sim IW(S_0, \alpha_0)$$ (MN: matrix normal, IW: inverse-wishart)

References

Bańbura, M., Giannone, D., & Reichlin, L. (2010). Large Bayesian vector auto regressions. Journal of Applied Econometrics, 25(1).

Giannone, D., Lenza, M., & Primiceri, G. E. (2015). Prior Selection for Vector Autoregressions. Review of Economics and Statistics, 97(2).

Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.

KADIYALA, K.R. and KARLSSON, S. (1997), NUMERICAL METHODS FOR ESTIMATION AND INFERENCE IN BAYESIAN VAR-MODELS. J. Appl. Econ., 12: 99-132.

Karlsson, S. (2013). Chapter 15 Forecasting with Bayesian Vector Autoregression. Handbook of Economic Forecasting, 2, 791-897.

Sims, C. A., & Zha, T. (1998). Bayesian Methods for Dynamic Multivariate Models. International Economic Review, 39(4), 949-968.

See also

Examples

# Perform the function using etf_vix dataset
fit <- bvar_minnesota(y = etf_vix[,1:3], p = 2)
class(fit)
#> [1] "bvarmn"   "bvharmod" "normaliw"

# Extract coef, fitted values, and residuals
coef(fit)
#>                   GVZCLS       OVXCLS      VXFXICLS
#> GVZCLS_1    0.9687374922  0.003277859 -2.127158e-03
#> OVXCLS_1   -0.0006560685  0.995091728  1.835137e-03
#> VXFXICLS_1  0.0005525222 -0.010547068  9.692097e-01
#> GVZCLS_2   -0.0063751732  0.005301266  5.301308e-03
#> OVXCLS_2   -0.0015610550 -0.001598387  1.827248e-05
#> VXFXICLS_2  0.0035974867 -0.002866207 -4.303821e-03
#> const       0.6384546093  0.355905198  7.620063e-01
head(residuals(fit))
#>            [,1]       [,2]       [,3]
#> [1,]  0.9565672  0.1633277  0.2936904
#> [2,] -0.5842806  1.1471284 -0.4752438
#> [3,] -0.2615766 -0.8953073  1.1790744
#> [4,]  0.3237965 -0.7384529 -0.3004217
#> [5,]  0.3217985 -0.7440802 -0.3050897
#> [6,] -0.3306978 -1.3119988 -0.5944614
head(fitted(fit))
#>        GVZCLS   OVXCLS VXFXICLS
#> [1,] 21.38343 35.35667 28.76631
#> [2,] 22.18428 35.44287 28.93524
#> [3,] 21.46158 36.51531 28.36093
#> [4,] 21.07620 35.53345 29.40542
#> [5,] 21.27820 34.71408 28.97509
#> [6,] 21.47070 33.90200 28.55446