Fitting Bayesian VAR with Coefficient and Covariance Prior
Source:R/var-bayes.R
, R/print-bvharsp.R
var_bayes.Rd
This function fits BVAR. Covariance term can be homoskedastic or heteroskedastic (stochastic volatility). It can have Minnesota, SSVS, and Horseshoe prior.
Usage
var_bayes(
y,
p,
num_chains = 1,
num_iter = 1000,
num_burn = floor(num_iter/2),
thinning = 1,
bayes_spec = set_bvar(),
cov_spec = set_ldlt(),
intercept = set_intercept(),
include_mean = TRUE,
minnesota = TRUE,
ggl = TRUE,
save_init = FALSE,
convergence = NULL,
verbose = FALSE,
num_thread = 1
)
# S3 method for class 'bvarsv'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
# S3 method for class 'bvarldlt'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
# S3 method for class 'bvarsv'
knit_print(x, ...)
# S3 method for class 'bvarldlt'
knit_print(x, ...)
Arguments
- y
Time series data of which columns indicate the variables
- p
VAR lag
- num_chains
Number of MCMC chains
- num_iter
MCMC iteration number
- num_burn
Number of burn-in (warm-up). Half of the iteration is the default choice.
- thinning
Thinning every thinning-th iteration
- bayes_spec
A BVAR model specification by
set_bvar()
,set_ssvs()
, orset_horseshoe()
.- cov_spec
SV specification by
set_sv()
.- intercept
Prior for the constant term by
set_intercept()
.- include_mean
Add constant term (Default:
TRUE
) or not (FALSE
)- minnesota
Apply cross-variable shrinkage structure (Minnesota-way). By default,
TRUE
.- ggl
If
TRUE
(default), use additional group shrinkage parameter for group structure. Otherwise, use group shrinkage parameter instead of global shirnkage parameter. Applies to HS, NG, and DL priors.- save_init
Save every record starting from the initial values (
TRUE
). By default, exclude the initial values in the record (FALSE
), even whennum_burn = 0
andthinning = 1
. Ifnum_burn > 0
orthinning != 1
, this option is ignored.- convergence
Convergence threshold for rhat < convergence. By default,
NULL
which means no warning.- verbose
Print the progress bar in the console. By default,
FALSE
.- num_thread
Number of threads
- x
bvarldlt
object- digits
digit option to print
- ...
not used
Value
var_bayes()
returns an object named bvarsv
class.
- coefficients
Posterior mean of coefficients.
- chol_posterior
Posterior mean of contemporaneous effects.
- param
Every set of MCMC trace.
- param_names
Name of every parameter.
- group
Indicators for group.
- num_group
Number of groups.
- df
Numer of Coefficients:
3m + 1
or3m
- p
VAR lag
- m
Dimension of the data
- obs
Sample size used when training =
totobs
-p
- totobs
Total number of the observation
- call
Matched call
- process
Description of the model, e.g.
VHAR_SSVS_SV
,VHAR_Horseshoe_SV
, orVHAR_minnesota-part_SV
- type
include constant term (
const
) or not (none
)- spec
Coefficients prior specification
- sv
log volatility prior specification
- intercept
Intercept prior specification
- init
Initial values
- chain
The numer of chains
- iter
Total iterations
- burn
Burn-in
- thin
Thinning
- y0
\(Y_0\)
- design
\(X_0\)
- y
Raw input
If it is SSVS or Horseshoe:
- pip
Posterior inclusion probabilities.
Details
Cholesky stochastic volatility modeling for VAR based on $$\Sigma_t^{-1} = L^T D_t^{-1} L$$, and implements corrected triangular algorithm for Gibbs sampler.
References
Carriero, A., Chan, J., Clark, T. E., & Marcellino, M. (2022). Corrigendum to “Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors” [J. Econometrics 212 (1)(2019) 137-154]. Journal of Econometrics, 227(2), 506-512.
Chan, J., Koop, G., Poirier, D., & Tobias, J. (2019). Bayesian Econometric Methods (2nd ed., Econometric Exercises). Cambridge: Cambridge University Press.
Cogley, T., & Sargent, T. J. (2005). Drifts and volatilities: monetary policies and outcomes in the post WWII US. Review of Economic Dynamics, 8(2), 262-302.
Gruber, L., & Kastner, G. (2022). Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends! arXiv.
Huber, F., Koop, G., & Onorante, L. (2021). Inducing Sparsity and Shrinkage in Time-Varying Parameter Models. Journal of Business & Economic Statistics, 39(3), 669-683.
Korobilis, D., & Shimizu, K. (2022). Bayesian Approaches to Shrinkage and Sparse Estimation. Foundations and Trends® in Econometrics, 11(4), 230-354.
Ray, P., & Bhattacharya, A. (2018). Signal Adaptive Variable Selector for the Horseshoe Prior. arXiv.