Covariance Matrix Prior Specification
Source:R/hyperparam.R
, R/print-bvharspec.R
, R/member.R
set_ldlt.Rd
Arguments
- ig_shape
Inverse-Gamma shape of Cholesky diagonal vector. For SV (
set_sv()
), this is for state variance.- ig_scl
Inverse-Gamma scale of Cholesky diagonal vector. For SV (
set_sv()
), this is for state variance.- initial_mean
Prior mean of initial state.
- initial_prec
Prior precision of initial state.
- x
covspec
- digits
digit option to print
- ...
not used
Details
set_ldlt()
specifies LDLT of precision matrix,
$$\Sigma^{-1} = L^T D^{-1} L$$
set_sv()
specifices time varying precision matrix under stochastic volatility framework based on
$$\Sigma_t^{-1} = L^T D_t^{-1} L$$
References
Carriero, A., Chan, J., Clark, T. E., & Marcellino, M. (2022). Corrigendum to “Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors” [J. Econometrics 212 (1)(2019) 137-154]. Journal of Econometrics, 227(2), 506-512.
Chan, J., Koop, G., Poirier, D., & Tobias, J. (2019). Bayesian Econometric Methods (2nd ed., Econometric Exercises). Cambridge: Cambridge University Press.