This function computes MASE given prediction result versus evaluation set.
Usage
mase(x, y, ...)
# S3 method for class 'predbvhar'
mase(x, y, ...)
# S3 method for class 'bvharcv'
mase(x, y, ...)
Details
Let \(e_t = y_t - \hat{y}_t\). Scaled error is defined by $$q_t = \frac{e_t}{\sum_{i = 2}^{n} \lvert Y_i - Y_{i - 1} \rvert / (n - 1)}$$ so that the error can be free of the data scale. Then
$$MASE = mean(\lvert q_t \rvert)$$
Here, \(Y_i\) are the points in the sample, i.e. errors are scaled by the in-sample mean absolute error (\(mean(\lvert e_t \rvert)\)) from the naive random walk forecasting.