This function computes RMSFE (Mean Squared Forecast Error Relative to the Benchmark)
Usage
rmsfe(x, pred_bench, y, ...)
# S3 method for class 'predbvhar'
rmsfe(x, pred_bench, y, ...)
# S3 method for class 'bvharcv'
rmsfe(x, pred_bench, y, ...)
Details
Let \(e_t = y_t - \hat{y}_t\). RMSFE is the ratio of L2 norm of \(e_t\) from forecasting object and from benchmark model.
$$RMSFE = \frac{sum(\lVert e_t \rVert)}{sum(\lVert e_t^{(b)} \rVert)}$$
where \(e_t^{(b)}\) is the error from the benchmark model.
References
Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679-688.
Bańbura, M., Giannone, D., & Reichlin, L. (2010). Large Bayesian vector auto regressions. Journal of Applied Econometrics, 25(1).
Ghosh, S., Khare, K., & Michailidis, G. (2018). High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models. Journal of the American Statistical Association, 114(526).