Skip to contents

Overview

bvhar provides functions to analyze and forecast multivariate time series using

  • VAR
  • VHAR (Vector HAR)
  • BVAR (Bayesian VAR)
  • BVHAR (Bayesian VHAR)

Basically, the package focuses on the research with forecasting.

Installation

Development version

You can install the development version from develop branch.

# install.packages("remotes")
remotes::install_github("ygeunkim/bvhar@develop")

We started to develop a Python version in python directory.

Models

library(bvhar) # this package
library(dplyr)

Repeatedly, bvhar is a research tool to analyze multivariate time series model above

Model function prior
VAR var_lm()
VHAR vhar_lm()
BVAR bvar_minnesota() Minnesota (will move to var_bayes())
BVHAR bvhar_minnesota() Minnesota (will move to vhar_bayes())
BVAR var_bayes() SSVS, Horseshoe, Minnesota, NG, DL, GDP
BVHAR vhar_bayes() SSVS, Horseshoe, Minnesota, NG, DL, GDP

This readme document shows forecasting procedure briefly. Details about each function are in vignettes and help documents. Details will be updated after the function integration works are done. Until then, we remove Bayesian model sections here.

h-step ahead forecasting:

h <- 19
etf_split <- divide_ts(etf_vix, h) # Try ?divide_ts
etf_tr <- etf_split$train
etf_te <- etf_split$test

VAR

VAR(5):

mod_var <- var_lm(y = etf_tr, p = 5)

Forecasting:

forecast_var <- predict(mod_var, h)

MSE:

(msevar <- mse(forecast_var, etf_te))
#>   GVZCLS   OVXCLS VXFXICLS VXEEMCLS VXSLVCLS   EVZCLS VXXLECLS VXGDXCLS 
#>    5.381   14.689    2.838    9.451   10.078    0.654   22.436    9.992 
#> VXEWZCLS 
#>   10.647

VHAR

mod_vhar <- vhar_lm(y = etf_tr)

MSE:

forecast_vhar <- predict(mod_vhar, h)
(msevhar <- mse(forecast_vhar, etf_te))
#>   GVZCLS   OVXCLS VXFXICLS VXEEMCLS VXSLVCLS   EVZCLS VXXLECLS VXGDXCLS 
#>     6.15     2.49     1.52     1.58    10.55     1.35     8.79     4.43 
#> VXEWZCLS 
#>     3.84

BVAR

BVHAR

Citation

Please cite this package with following BibTeX:

@Manual{,
  title = {{bvhar}: Bayesian Vector Heterogeneous Autoregressive Modeling},
  author = {Young Geun Kim and Changryong Baek},
  year = {2023},
  doi = {10.32614/CRAN.package.bvhar},
  note = {R package version 2.3.0.9011},
  url = {https://cran.r-project.org/package=bvhar},
}

@Article{,
  title = {Bayesian Vector Heterogeneous Autoregressive Modeling},
  author = {Young Geun Kim and Changryong Baek},
  journal = {Journal of Statistical Computation and Simulation},
  year = {2024},
  volume = {94},
  number = {6},
  pages = {1139--1157},
  doi = {10.1080/00949655.2023.2281644},
}

Code of Conduct

Please note that the bvhar project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.