This function gives connectedness table with h-step ahead normalized spillover index (a.k.a. variance shares).
Usage
spillover(object, n_ahead = 10L, ...)
# S3 method for class 'bvharspillover'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
# S3 method for class 'bvharspillover'
knit_print(x, ...)
# S3 method for class 'olsmod'
spillover(object, n_ahead = 10L, ...)
# S3 method for class 'normaliw'
spillover(
  object,
  n_ahead = 10L,
  num_iter = 5000L,
  num_burn = floor(num_iter/2),
  thinning = 1L,
  ...
)
# S3 method for class 'bvarldlt'
spillover(object, n_ahead = 10L, level = 0.05, sparse = FALSE, ...)
# S3 method for class 'bvharldlt'
spillover(object, n_ahead = 10L, level = 0.05, sparse = FALSE, ...)Arguments
- object
- Model object 
- n_ahead
- step to forecast. By default, 10. 
- ...
- not used 
- x
- bvharspilloverobject
- digits
- digit option to print 
- num_iter
- Number to sample MNIW distribution 
- num_burn
- Number of burn-in 
- thinning
- Thinning every thinning-th iteration 
- level
- Specify alpha of confidence interval level 100(1 - alpha) percentage. By default, .05. 
- sparse
