This function computes FDR (false discovery rate) and FNR (false negative rate) for sparse element of the true coefficients given threshold.
     
    
    Usage
    confusion(x, y, ...)
# S3 method for class 'summary.bvharsp'
confusion(x, y, truth_thr = 0, ...)
 
    
    Arguments
- x
- summary.bvharspobject.
 
- y
- True inclusion variable. 
- ...
- not used 
- truth_thr
- Threshold value when using non-sparse true coefficient matrix. By default, - 0for sparse matrix.
 
 
    
    Value
    Confusion table as following.
| True-estimate | Positive (0) | Negative (1) | 
| Positive (0) | TP | FN | 
| Negative (1) | FP | TN | 
 
    
    Details
    When using this function, the true coefficient matrix \(\Phi\) should be sparse.
In this confusion matrix, positive (0) means sparsity.
FP is false positive, and TP is true positive.
FN is false negative, and FN is false negative.
     
    
    References
    Bai, R., & Ghosh, M. (2018). High-dimensional multivariate posterior consistency under global-local shrinkage priors. Journal of Multivariate Analysis, 167, 157-170.