This function gives connectedness table with h-step ahead normalized spillover index (a.k.a. variance shares).
Usage
dynamic_spillover(object, n_ahead = 10L, ...)
# S3 method for class 'bvhardynsp'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
# S3 method for class 'bvhardynsp'
knit_print(x, ...)
# S3 method for class 'olsmod'
dynamic_spillover(object, n_ahead = 10L, window, num_thread = 1, ...)
# S3 method for class 'normaliw'
dynamic_spillover(
object,
n_ahead = 10L,
window,
num_iter = 1000L,
num_burn = floor(num_iter/2),
thinning = 1,
num_thread = 1,
...
)
# S3 method for class 'ldltmod'
dynamic_spillover(
object,
n_ahead = 10L,
window,
level = 0.05,
sparse = FALSE,
num_thread = 1,
...
)
# S3 method for class 'svmod'
dynamic_spillover(
object,
n_ahead = 10L,
level = 0.05,
sparse = FALSE,
num_thread = 1,
...
)
Arguments
- object
Model object
- n_ahead
step to forecast. By default, 10.
- ...
not used
- x
bvhardynsp
object- digits
digit option to print
- window
Window size
- num_thread
- num_iter
Number to sample MNIW distribution
- num_burn
Number of burn-in
- thinning
Thinning every thinning-th iteration
- level
Specify alpha of confidence interval level 100(1 - alpha) percentage. By default, .05.
- sparse