This function generates parameters of BVAR with Minnesota prior.
Usage
sim_mnvhar_coef(bayes_spec = set_bvhar(), full = TRUE)
Arguments
- bayes_spec
A BVHAR model specification by
set_bvhar()
(default) orset_weight_bvhar()
.- full
Generate variance matrix from IW (default:
TRUE
) or not (FALSE
)?
Value
List with the following component.
- coefficients
BVHAR coefficient (MN)
- covmat
BVHAR variance (IW or diagonal matrix of
sigma
ofbayes_spec
)
Details
Normal-IW family for vector HAR model: $$\Phi \mid \Sigma_e \sim MN(M_0, \Omega_0, \Sigma_e)$$ $$\Sigma_e \sim IW(\Psi_0, \nu_0)$$
References
Kim, Y. G., and Baek, C. (2024). Bayesian vector heterogeneous autoregressive modeling. Journal of Statistical Computation and Simulation, 94(6), 1139-1157.
See also
set_bvhar()
to specify the hyperparameters of VAR-type Minnesota prior.set_weight_bvhar()
to specify the hyperparameters of HAR-type Minnesota prior.
Examples
# Generate (Phi, Sigma)
# BVHAR-S
# sigma: 1, 1, 1
# lambda: .1
# delta: .1, .1, .1
# epsilon: 1e-04
set.seed(1)
sim_mnvhar_coef(
bayes_spec = set_bvhar(
sigma = rep(1, 3),
lambda = .1,
delta = rep(.1, 3),
eps = 1e-04
),
full = TRUE
)
#> $coefficients
#> [,1] [,2] [,3]
#> [1,] 0.081071630 0.002721103 0.092414563
#> [2,] 0.049041658 0.062491732 -0.032011373
#> [3,] -0.018590620 -0.008312152 0.066508409
#> [4,] 0.008099504 -0.017944600 0.007603526
#> [5,] -0.039740346 0.001970018 -0.017502085
#> [6,] 0.004281752 0.014382071 0.007386941
#> [7,] 0.010781378 0.011870368 0.001985094
#> [8,] -0.027501057 0.004849875 -0.019751320
#> [9,] -0.011622302 -0.003601531 -0.018535816
#>
#> $covmat
#> [,1] [,2] [,3]
#> [1,] 0.41248285 -0.06400052 0.24882667
#> [2,] -0.06400052 0.14995663 0.01758338
#> [3,] 0.24882667 0.01758338 0.35941383
#>