This function generates parameters of BVAR with Minnesota prior.
Usage
sim_mnvhar_coef(bayes_spec = set_bvhar(), full = TRUE)
Arguments
- bayes_spec
A BVHAR model specification by
set_bvhar()
(default) orset_weight_bvhar()
.- full
Generate variance matrix from IW (default:
TRUE
) or not (FALSE
)?
Value
List with the following component.
- coefficients
BVHAR coefficient (MN)
- covmat
BVHAR variance (IW or diagonal matrix of
sigma
ofbayes_spec
)
Details
Normal-IW family for vector HAR model: $$\Phi \mid \Sigma_e \sim MN(M_0, \Omega_0, \Sigma_e)$$ $$\Sigma_e \sim IW(\Psi_0, \nu_0)$$
References
Kim, Y. G., and Baek, C. (2024). Bayesian vector heterogeneous autoregressive modeling. Journal of Statistical Computation and Simulation, 94(6), 1139-1157.
See also
set_bvhar()
to specify the hyperparameters of VAR-type Minnesota prior.set_weight_bvhar()
to specify the hyperparameters of HAR-type Minnesota prior.
Examples
# Generate (Phi, Sigma)
# BVHAR-S
# sigma: 1, 1, 1
# lambda: .1
# delta: .1, .1, .1
# epsilon: 1e-04
set.seed(1)
sim_mnvhar_coef(
bayes_spec = set_bvhar(
sigma = rep(1, 3),
lambda = .1,
delta = rep(.1, 3),
eps = 1e-04
),
full = TRUE
)
#> $coefficients
#> [,1] [,2] [,3]
#> [1,] 0.1760184710 -0.0165328928 -0.065147252
#> [2,] 0.1556541344 0.0361635386 -0.167462417
#> [3,] -0.2280271782 0.1579619956 0.348108349
#> [4,] -0.0008334809 0.0183525644 0.051859820
#> [5,] 0.0305742650 0.0020105043 0.021978150
#> [6,] 0.0038386336 -0.0397341846 -0.023663045
#> [7,] -0.0019263525 -0.0009998963 -0.037044795
#> [8,] -0.0164102306 0.0135852939 0.054350260
#> [9,] -0.0035277008 0.0066925905 0.007425529
#>
#> $covmat
#> [,1] [,2] [,3]
#> [1,] 1.0600918 -0.5356457 -0.9412103
#> [2,] -0.5356457 0.4150287 0.6410763
#> [3,] -0.9412103 0.6410763 1.5794713
#>