Computes responses to impulses or orthogonal impulses
Usage
# S3 method for class 'varlse'
irf(object, lag_max = 10, orthogonal = TRUE, impulse_var, response_var, ...)
# S3 method for class 'vharlse'
irf(object, lag_max = 10, orthogonal = TRUE, impulse_var, response_var, ...)
# S3 method for class 'bvharirf'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
irf(object, lag_max, orthogonal, impulse_var, response_var, ...)
is.bvharirf(x)
# S3 method for class 'bvharirf'
knit_print(x, ...)Arguments
- object
- Model object 
- lag_max
- Maximum lag to investigate the impulse responses (By default, - 10)
- orthogonal
- Orthogonal impulses ( - TRUE) or just impulses (- FALSE)
- impulse_var
- Impulse variables character vector. If not specified, use every variable. 
- response_var
- Response variables character vector. If not specified, use every variable. 
- ...
- not used 
- x
- Any object 
- digits
- digit option to print 
Value
bvharirf class
Responses to forecast errors
If orthogonal = FALSE, the function gives \(W_j\) VMA representation of the process such that
$$Y_t = \sum_{j = 0}^\infty W_j \epsilon_{t - j}$$
Responses to orthogonal impulses
If orthogonal = TRUE, it gives orthogonalized VMA representation $$\Theta$$.
Based on variance decomposition (Cholesky decomposition)
$$\Sigma = P P^T$$
where \(P\) is lower triangular matrix,
impulse response analysis if performed under MA representation
$$y_t = \sum_{i = 0}^\infty \Theta_i v_{t - i}$$
Here,
$$\Theta_i = W_i P$$
and \(v_t = P^{-1} \epsilon_t\) are orthogonal.
References
Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.
