
Summarizing Bayesian Multivariate Time Series Model
Source:R/summary-bayes.R, R/print-summarymniw.R
      summary.normaliw.Rdsummary method for normaliw class.
Usage
# S3 method for class 'normaliw'
summary(
  object,
  num_chains = 1,
  num_iter = 1000,
  num_burn = floor(num_iter/2),
  thinning = 1,
  verbose = FALSE,
  num_thread = 1,
  ...
)
# S3 method for class 'summary.normaliw'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
# S3 method for class 'summary.normaliw'
knit_print(x, ...)Arguments
- object
- A - normaliwobject
- num_chains
- Number of MCMC chains 
- num_iter
- MCMC iteration number 
- num_burn
- Number of burn-in (warm-up). Half of the iteration is the default choice. 
- thinning
- Thinning every thinning-th iteration 
- verbose
- Print the progress bar in the console. By default, - FALSE.
- num_thread
- Number of threads 
- ...
- not used 
- x
- summary.normaliwobject
- digits
- digit option to print 
Value
summary.normaliw class has the following components:
- names
- Variable names 
- totobs
- Total number of the observation 
- obs
- Sample size used when training = - totobs-- p
- p
- Lag of VAR 
- m
- Dimension of the data 
- call
- Matched call 
- spec
- Model specification ( - bvharspec)
- mn_mean
- MN Mean of posterior distribution (MN-IW) 
- mn_prec
- MN Precision of posterior distribution (MN-IW) 
- iw_scale
- IW scale of posterior distribution (MN-IW) 
- iw_shape
- IW df of posterior distribution (MN-IW) 
- iter
- Number of MCMC iterations 
- burn
- Number of MCMC burn-in 
- thin
- MCMC thinning 
- alpha_record (BVAR) and phi_record (BVHAR)
- MCMC record of coefficients vector 
- psi_record
- MCMC record of upper cholesky factor 
- omega_record
- MCMC record of diagonal of cholesky factor 
- eta_record
- MCMC record of upper part of cholesky factor 
- param
- MCMC record of every parameter 
- coefficients
- Posterior mean of coefficients 
- covmat
- Posterior mean of covariance 
Details
From Minnesota prior, set of coefficient matrices and residual covariance matrix have matrix Normal Inverse-Wishart distribution.
BVAR:
$$(A, \Sigma_e) \sim MNIW(\hat{A}, \hat{V}^{-1}, \hat\Sigma_e, \alpha_0 + n)$$ where \(\hat{V} = X_\ast^T X_\ast\) is the posterior precision of MN.
BVHAR:
$$(\Phi, \Sigma_e) \sim MNIW(\hat\Phi, \hat{V}_H^{-1}, \hat\Sigma_e, \nu + n)$$ where \(\hat{V}_H = X_{+}^T X_{+}\) is the posterior precision of MN.