This function chooses the set of hyperparameters of Bayesian model using stats::optim()
function.
Usage
choose_bayes(
bayes_bound = bound_bvhar(),
...,
eps = 1e-04,
y,
order = c(5, 22),
include_mean = TRUE,
parallel = list()
)
Arguments
- bayes_bound
Empirical Bayes optimization bound specification defined by
bound_bvhar()
.- ...
Additional arguments for
stats::optim()
.- eps
Hyperparameter
eps
is fixed. By default,1e-04
.- y
Time series data
- order
Order for BVAR or BVHAR.
p
ofbvar_minnesota()
orhar
ofbvhar_minnesota()
. By default,c(5, 22)
forhar
.- include_mean
Add constant term (Default:
TRUE
) or not (FALSE
)- parallel
List the same argument of
optimParallel::optimParallel()
. By default, this is empty, and the function does not execute parallel computation.
Value
bvharemp
class is a list that has
- ...
Many components of
stats::optim()
oroptimParallel::optimParallel()
- spec
Corresponding
bvharspec
- fit
Chosen Bayesian model
- ml
Marginal likelihood of the final model
References
Giannone, D., Lenza, M., & Primiceri, G. E. (2015). Prior Selection for Vector Autoregressions. Review of Economics and Statistics, 97(2).
Kim, Y. G., and Baek, C. (2024). Bayesian vector heterogeneous autoregressive modeling. Journal of Statistical Computation and Simulation, 94(6), 1139-1157.
See also
bound_bvhar()
to define L-BFGS-B optimization bounds.Individual functions:
choose_bvar()