This function chooses the set of hyperparameters of Bayesian model using 
stats::optim() function.
Usage
choose_bayes(
  bayes_bound = bound_bvhar(),
  ...,
  eps = 1e-04,
  y,
  order = c(5, 22),
  include_mean = TRUE,
  parallel = list()
)Arguments
- bayes_bound
- Empirical Bayes optimization bound specification defined by - bound_bvhar().
- ...
- Additional arguments for - stats::optim().
- eps
- Hyperparameter - epsis fixed. By default,- 1e-04.
- y
- Time series data 
- order
- Order for BVAR or BVHAR. - pof- bvar_minnesota()or- harof- bvhar_minnesota(). By default,- c(5, 22)for- har.
- include_mean
- Add constant term (Default: - TRUE) or not (- FALSE)
- parallel
- List the same argument of - optimParallel::optimParallel(). By default, this is empty, and the function does not execute parallel computation.
Value
bvharemp class is a list that has
- ...
- Many components of - stats::optim()or- optimParallel::optimParallel()
- spec
- Corresponding - bvharspec
- fit
- Chosen Bayesian model 
- ml
- Marginal likelihood of the final model 
References
Giannone, D., Lenza, M., & Primiceri, G. E. (2015). Prior Selection for Vector Autoregressions. Review of Economics and Statistics, 97(2).
Kim, Y. G., and Baek, C. (2024). Bayesian vector heterogeneous autoregressive modeling. Journal of Statistical Computation and Simulation, 94(6), 1139-1157.
See also
- bound_bvhar()to define L-BFGS-B optimization bounds.
- Individual functions: - choose_bvar()
