Fitting Bayesian VAR(p) of Flat Prior
Source:R/bvar-flat.R
, R/print-bvarflat.R
, R/criteria.R
, and 1 more
bvar_flat.Rd
This function fits BVAR(p) with flat prior.
Usage
bvar_flat(
y,
p,
num_chains = 1,
num_iter = 1000,
num_burn = floor(num_iter/2),
thinning = 1,
bayes_spec = set_bvar_flat(),
include_mean = TRUE,
verbose = FALSE,
num_thread = 1
)
# S3 method for class 'bvarflat'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
# S3 method for class 'bvarflat'
logLik(object, ...)
# S3 method for class 'bvarflat'
AIC(object, ...)
# S3 method for class 'bvarflat'
BIC(object, ...)
is.bvarflat(x)
# S3 method for class 'bvarflat'
knit_print(x, ...)
Arguments
- y
Time series data of which columns indicate the variables
- p
VAR lag
- num_chains
Number of MCMC chains
- num_iter
MCMC iteration number
- num_burn
Number of burn-in (warm-up). Half of the iteration is the default choice.
- thinning
Thinning every thinning-th iteration
- bayes_spec
A BVAR model specification by
set_bvar_flat()
.- include_mean
Add constant term (Default:
TRUE
) or not (FALSE
)- verbose
Print the progress bar in the console. By default,
FALSE
.- num_thread
Number of threads
- x
Any object
- digits
digit option to print
- ...
not used
- object
A
bvarflat
object
Value
bvar_flat()
returns an object bvarflat
class.
It is a list with the following components:
- coefficients
Posterior Mean matrix of Matrix Normal distribution
- fitted.values
Fitted values
- residuals
Residuals
- mn_prec
Posterior precision matrix of Matrix Normal distribution
- iw_scale
Posterior scale matrix of posterior inverse-wishart distribution
- iw_shape
Posterior shape of inverse-wishart distribution
- df
Numer of Coefficients: mp + 1 or mp
- p
Lag of VAR
- m
Dimension of the time series
- obs
Sample size used when training =
totobs
-p
- totobs
Total number of the observation
- process
Process string in the
bayes_spec
:BVAR_Flat
- spec
Model specification (
bvharspec
)- type
include constant term (
const
) or not (none
)- call
Matched call
- prior_mean
Prior mean matrix of Matrix Normal distribution: zero matrix
- prior_precision
Prior precision matrix of Matrix Normal distribution: \(U^{-1}\)
- y0
\(Y_0\)
- design
\(X_0\)
- y
Raw input (
matrix
)
Details
Ghosh et al. (2018) gives flat prior for residual matrix in BVAR.
Under this setting, there are many models such as hierarchical or non-hierarchical. This function chooses the most simple non-hierarchical matrix normal prior in Section 3.1.
$$A \mid \Sigma_e \sim MN(0, U^{-1}, \Sigma_e)$$ where U: precision matrix (MN: matrix normal). $$p (\Sigma_e) \propto 1$$
References
Ghosh, S., Khare, K., & Michailidis, G. (2018). High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models. Journal of the American Statistical Association, 114(526).
Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.
See also
set_bvar_flat()
to specify the hyperparameters of BVAR flat prior.coef.bvarflat()
,residuals.bvarflat()
, andfitted.bvarflat()
predict.bvarflat()
to forecast the BVHAR process