
Package index
-
bvharbvhar-package - bvhar: Bayesian Vector Heterogeneous Autoregressive Modeling
-
var_lm()print(<varlse>)logLik(<varlse>)AIC(<varlse>)BIC(<varlse>)is.varlse()is.bvharmod()knit_print(<varlse>) - Fitting Vector Autoregressive Model of Order p Model
-
vhar_lm()print(<vharlse>)logLik(<vharlse>)AIC(<vharlse>)BIC(<vharlse>)is.vharlse()knit_print(<vharlse>) - Fitting Vector Heterogeneous Autoregressive Model
-
VARtoVMA() - Convert VAR to VMA(infinite)
-
VHARtoVMA() - Convert VHAR to VMA(infinite)
-
summary(<varlse>)print(<summary.varlse>)knit_print(<summary.varlse>) - Summarizing Vector Autoregressive Model
-
summary(<vharlse>)print(<summary.vharlse>)knit_print(<summary.vharlse>) - Summarizing Vector HAR Model
-
set_bvar()set_bvar_flat()set_bvhar()set_weight_bvhar()print(<bvharspec>)is.bvharspec()knit_print(<bvharspec>) - Hyperparameters for Bayesian Models
-
set_ssvs()print(<ssvsinput>)is.ssvsinput()knit_print(<ssvsinput>) - Stochastic Search Variable Selection (SSVS) Hyperparameter for Coefficients Matrix and Cholesky Factor
-
set_lambda()set_psi()print(<bvharpriorspec>)is.bvharpriorspec()knit_print(<bvharpriorspec>) - Hyperpriors for Bayesian Models
-
set_horseshoe()print(<horseshoespec>)is.horseshoespec()knit_print(<horseshoespec>) - Horseshoe Prior Specification
-
set_ng()print(<ngspec>)is.ngspec()experimental - Normal-Gamma Hyperparameter for Coefficients and Contemporaneous Coefficients
-
set_dl()print(<dlspec>)is.dlspec()experimental - Dirichlet-Laplace Hyperparameter for Coefficients and Contemporaneous Coefficients
-
set_gdp()is.gdpspec()experimental - Generalized Double Pareto Shrinkage Hyperparameters for Coefficients and Contemporaneous Coefficients
-
set_ldlt()set_sv()print(<covspec>)is.covspec()is.svspec()is.ldltspec()experimental - Covariance Matrix Prior Specification
-
set_intercept()print(<interceptspec>)is.interceptspec()knit_print(<interceptspec>) - Prior for Constant Term
-
var_bayes()print(<bvarsv>)print(<bvarldlt>)knit_print(<bvarsv>)knit_print(<bvarldlt>)maturing - Fitting Bayesian VAR with Coefficient and Covariance Prior
-
bvar_minnesota()print(<bvarmn>)print(<bvarhm>)logLik(<bvarmn>)AIC(<bvarmn>)BIC(<bvarmn>)is.bvarmn()knit_print(<bvarmn>)knit_print(<bvarhm>) - Fitting Bayesian VAR(p) of Minnesota Prior
-
bvar_flat()print(<bvarflat>)logLik(<bvarflat>)AIC(<bvarflat>)BIC(<bvarflat>)is.bvarflat()knit_print(<bvarflat>) - Fitting Bayesian VAR(p) of Flat Prior
-
vhar_bayes()print(<bvharsv>)print(<bvharldlt>)knit_print(<bvharsv>)knit_print(<bvharldlt>)maturing - Fitting Bayesian VHAR with Coefficient and Covariance Prior
-
bvhar_minnesota()print(<bvharmn>)print(<bvharhm>)logLik(<bvharmn>)AIC(<bvharmn>)BIC(<bvharmn>)is.bvharmn()knit_print(<bvharmn>)knit_print(<bvharhm>) - Fitting Bayesian VHAR of Minnesota Prior
-
summary(<normaliw>)print(<summary.normaliw>)knit_print(<summary.normaliw>) - Summarizing Bayesian Multivariate Time Series Model
-
print(<summary.bvharsp>)knit_print(<summary.bvharsp>)summary(<ssvsmod>)summary(<hsmod>)summary(<ngmod>) - Summarizing BVAR and BVHAR with Shrinkage Priors
-
predict(<varlse>)predict(<vharlse>)predict(<bvarmn>)predict(<bvharmn>)predict(<bvarflat>)predict(<bvarldlt>)predict(<bvharldlt>)predict(<bvarsv>)predict(<bvharsv>)print(<predbvhar>)is.predbvhar()knit_print(<predbvhar>) - Forecasting Multivariate Time Series
-
divide_ts() - Split a Time Series Dataset into Train-Test Set
-
forecast_roll()print(<bvharcv>)is.bvharcv()knit_print(<bvharcv>) - Out-of-sample Forecasting based on Rolling Window
-
forecast_expand() - Out-of-sample Forecasting based on Expanding Window
-
print(<bvharirf>)irf()is.bvharirf()knit_print(<bvharirf>) - Impulse Response Analysis
-
spillover()print(<bvharspillover>)knit_print(<bvharspillover>) - h-step ahead Normalized Spillover
-
dynamic_spillover()print(<bvhardynsp>)knit_print(<bvhardynsp>) - Dynamic Spillover
-
mse() - Evaluate the Model Based on MSE (Mean Square Error)
-
mae() - Evaluate the Model Based on MAE (Mean Absolute Error)
-
mape() - Evaluate the Model Based on MAPE (Mean Absolute Percentage Error)
-
mase() - Evaluate the Model Based on MASE (Mean Absolute Scaled Error)
-
mrae() - Evaluate the Model Based on MRAE (Mean Relative Absolute Error)
-
alpl() - Evaluate the Density Forecast Based on Average Log Predictive Likelihood (APLP)
-
relmae() - Evaluate the Model Based on RelMAE (Relative MAE)
-
rmsfe() - Evaluate the Model Based on RMSFE
-
rmafe() - Evaluate the Model Based on RMAFE
-
rmape() - Evaluate the Model Based on RMAPE (Relative MAPE)
-
rmase() - Evaluate the Model Based on RMASE (Relative MASE)
-
conf_fdr() - Evaluate the Sparsity Estimation Based on FDR
-
conf_fnr() - Evaluate the Sparsity Estimation Based on FNR
-
conf_fscore() - Evaluate the Sparsity Estimation Based on F1 Score
-
conf_prec() - Evaluate the Sparsity Estimation Based on Precision
-
conf_recall() - Evaluate the Sparsity Estimation Based on Recall
-
confusion() - Evaluate the Sparsity Estimation Based on Confusion Matrix
-
fromse() - Evaluate the Estimation Based on Frobenius Norm
-
spne() - Evaluate the Estimation Based on Spectral Norm Error
-
relspne() - Evaluate the Estimation Based on Relative Spectral Norm Error
-
compute_logml() - Extracting Log of Marginal Likelihood
-
choose_bvar()choose_bvhar()print(<bvharemp>)is.bvharemp()knit_print(<bvharemp>) - Finding the Set of Hyperparameters of Individual Bayesian Model
-
bound_bvhar()print(<boundbvharemp>)is.boundbvharemp()knit_print(<boundbvharemp>)experimental - Setting Empirical Bayes Optimization Bounds
-
choose_bayes()experimental - Finding the Set of Hyperparameters of Bayesian Model
-
FPE() - Final Prediction Error Criterion
-
HQ() - Hannan-Quinn Criterion
-
choose_var() - Choose the Best VAR based on Information Criteria
-
compute_dic() - Deviance Information Criterion of Multivariate Time Series Model
-
autoplot(<normaliw>) - Residual Plot for Minnesota Prior VAR Model
-
autoplot(<summary.normaliw>) - Density Plot for Minnesota Prior VAR Model
-
autoplot(<predbvhar>)autolayer(<predbvhar>) - Plot Forecast Result
-
geom_eval() - Adding Test Data Layer
-
gg_loss() - Compare Lists of Models
-
autoplot(<bvharirf>) - Plot Impulse Responses
-
autoplot(<bvharsp>) - Plot the Result of BVAR and BVHAR MCMC
-
autoplot(<summary.bvharsp>) - Plot the Heatmap of SSVS Coefficients
-
autoplot(<bvhardynsp>) - Dynamic Spillover Indices Plot
-
sim_var() - Generate Multivariate Time Series Process Following VAR(p)
-
sim_vhar() - Generate Multivariate Time Series Process Following VAR(p)
-
sim_mncoef() - Generate Minnesota BVAR Parameters
-
sim_mnvhar_coef() - Generate Minnesota BVAR Parameters
-
sim_mnormal() - Generate Multivariate Normal Random Vector
-
sim_matgaussian() - Generate Matrix Normal Random Matrix
-
sim_iw() - Generate Inverse-Wishart Random Matrix
-
sim_mniw() - Generate Normal-IW Random Family
-
sim_mvt() - Generate Multivariate t Random Vector
-
etf_vix - CBOE ETF Volatility Index Dataset
-
stableroot() - Roots of characteristic polynomial
-
is.stable() - Stability of the process
-
coef(<varlse>)coef(<vharlse>)coef(<bvarmn>)coef(<bvarflat>)coef(<bvharmn>)coef(<bvharsp>)coef(<summary.bvharsp>) - Coefficient Matrix of Multivariate Time Series Models
-
residuals(<varlse>)residuals(<vharlse>)residuals(<bvarmn>)residuals(<bvarflat>)residuals(<bvharmn>) - Residual Matrix from Multivariate Time Series Models
-
fitted(<varlse>)fitted(<vharlse>)fitted(<bvarmn>)fitted(<bvarflat>)fitted(<bvharmn>) - Fitted Matrix from Multivariate Time Series Models