
Package index
- 
          bvharbvhar-package
- bvhar: Bayesian Vector Heterogeneous Autoregressive Modeling
- 
          var_lm()print(<varlse>)logLik(<varlse>)AIC(<varlse>)BIC(<varlse>)is.varlse()is.bvharmod()knit_print(<varlse>)
- Fitting Vector Autoregressive Model of Order p Model
- 
          vhar_lm()print(<vharlse>)logLik(<vharlse>)AIC(<vharlse>)BIC(<vharlse>)is.vharlse()knit_print(<vharlse>)
- Fitting Vector Heterogeneous Autoregressive Model
- 
          VARtoVMA()
- Convert VAR to VMA(infinite)
- 
          VHARtoVMA()
- Convert VHAR to VMA(infinite)
- 
          summary(<varlse>)print(<summary.varlse>)knit_print(<summary.varlse>)
- Summarizing Vector Autoregressive Model
- 
          summary(<vharlse>)print(<summary.vharlse>)knit_print(<summary.vharlse>)
- Summarizing Vector HAR Model
- 
          set_bvar()set_bvar_flat()set_bvhar()set_weight_bvhar()print(<bvharspec>)is.bvharspec()knit_print(<bvharspec>)
- Hyperparameters for Bayesian Models
- 
          set_ssvs()print(<ssvsinput>)is.ssvsinput()knit_print(<ssvsinput>)
- Stochastic Search Variable Selection (SSVS) Hyperparameter for Coefficients Matrix and Cholesky Factor
- 
          set_lambda()set_psi()print(<bvharpriorspec>)is.bvharpriorspec()knit_print(<bvharpriorspec>)
- Hyperpriors for Bayesian Models
- 
          set_horseshoe()print(<horseshoespec>)is.horseshoespec()knit_print(<horseshoespec>)
- Horseshoe Prior Specification
- 
          set_ng()print(<ngspec>)is.ngspec()experimental
- Normal-Gamma Hyperparameter for Coefficients and Contemporaneous Coefficients
- 
          set_dl()print(<dlspec>)is.dlspec()experimental
- Dirichlet-Laplace Hyperparameter for Coefficients and Contemporaneous Coefficients
- 
          set_gdp()is.gdpspec()experimental
- Generalized Double Pareto Shrinkage Hyperparameters for Coefficients and Contemporaneous Coefficients
- 
          set_ldlt()set_sv()print(<covspec>)is.covspec()is.svspec()is.ldltspec()experimental
- Covariance Matrix Prior Specification
- 
          set_intercept()print(<interceptspec>)is.interceptspec()knit_print(<interceptspec>)
- Prior for Constant Term
- 
          var_bayes()print(<bvarsv>)print(<bvarldlt>)knit_print(<bvarsv>)knit_print(<bvarldlt>)maturing
- Fitting Bayesian VAR with Coefficient and Covariance Prior
- 
          bvar_minnesota()print(<bvarmn>)print(<bvarhm>)logLik(<bvarmn>)AIC(<bvarmn>)BIC(<bvarmn>)is.bvarmn()knit_print(<bvarmn>)knit_print(<bvarhm>)
- Fitting Bayesian VAR(p) of Minnesota Prior
- 
          bvar_flat()print(<bvarflat>)logLik(<bvarflat>)AIC(<bvarflat>)BIC(<bvarflat>)is.bvarflat()knit_print(<bvarflat>)
- Fitting Bayesian VAR(p) of Flat Prior
- 
          vhar_bayes()print(<bvharsv>)print(<bvharldlt>)knit_print(<bvharsv>)knit_print(<bvharldlt>)maturing
- Fitting Bayesian VHAR with Coefficient and Covariance Prior
- 
          bvhar_minnesota()print(<bvharmn>)print(<bvharhm>)logLik(<bvharmn>)AIC(<bvharmn>)BIC(<bvharmn>)is.bvharmn()knit_print(<bvharmn>)knit_print(<bvharhm>)
- Fitting Bayesian VHAR of Minnesota Prior
- 
          summary(<normaliw>)print(<summary.normaliw>)knit_print(<summary.normaliw>)
- Summarizing Bayesian Multivariate Time Series Model
- 
          print(<summary.bvharsp>)knit_print(<summary.bvharsp>)summary(<ssvsmod>)summary(<hsmod>)summary(<ngmod>)
- Summarizing BVAR and BVHAR with Shrinkage Priors
- 
          predict(<varlse>)predict(<vharlse>)predict(<bvarmn>)predict(<bvharmn>)predict(<bvarflat>)predict(<bvarldlt>)predict(<bvharldlt>)predict(<bvarsv>)predict(<bvharsv>)print(<predbvhar>)is.predbvhar()knit_print(<predbvhar>)
- Forecasting Multivariate Time Series
- 
          divide_ts()
- Split a Time Series Dataset into Train-Test Set
- 
          forecast_roll()print(<bvharcv>)is.bvharcv()knit_print(<bvharcv>)
- Out-of-sample Forecasting based on Rolling Window
- 
          forecast_expand()
- Out-of-sample Forecasting based on Expanding Window
- 
          print(<bvharirf>)irf()is.bvharirf()knit_print(<bvharirf>)
- Impulse Response Analysis
- 
          spillover()print(<bvharspillover>)knit_print(<bvharspillover>)
- h-step ahead Normalized Spillover
- 
          dynamic_spillover()print(<bvhardynsp>)knit_print(<bvhardynsp>)
- Dynamic Spillover
- 
          mse()
- Evaluate the Model Based on MSE (Mean Square Error)
- 
          mae()
- Evaluate the Model Based on MAE (Mean Absolute Error)
- 
          mape()
- Evaluate the Model Based on MAPE (Mean Absolute Percentage Error)
- 
          mase()
- Evaluate the Model Based on MASE (Mean Absolute Scaled Error)
- 
          mrae()
- Evaluate the Model Based on MRAE (Mean Relative Absolute Error)
- 
          alpl()
- Evaluate the Density Forecast Based on Average Log Predictive Likelihood (APLP)
- 
          relmae()
- Evaluate the Model Based on RelMAE (Relative MAE)
- 
          rmsfe()
- Evaluate the Model Based on RMSFE
- 
          rmafe()
- Evaluate the Model Based on RMAFE
- 
          rmape()
- Evaluate the Model Based on RMAPE (Relative MAPE)
- 
          rmase()
- Evaluate the Model Based on RMASE (Relative MASE)
- 
          conf_fdr()
- Evaluate the Sparsity Estimation Based on FDR
- 
          conf_fnr()
- Evaluate the Sparsity Estimation Based on FNR
- 
          conf_fscore()
- Evaluate the Sparsity Estimation Based on F1 Score
- 
          conf_prec()
- Evaluate the Sparsity Estimation Based on Precision
- 
          conf_recall()
- Evaluate the Sparsity Estimation Based on Recall
- 
          confusion()
- Evaluate the Sparsity Estimation Based on Confusion Matrix
- 
          fromse()
- Evaluate the Estimation Based on Frobenius Norm
- 
          spne()
- Evaluate the Estimation Based on Spectral Norm Error
- 
          relspne()
- Evaluate the Estimation Based on Relative Spectral Norm Error
- 
          compute_logml()
- Extracting Log of Marginal Likelihood
- 
          choose_bvar()choose_bvhar()print(<bvharemp>)is.bvharemp()knit_print(<bvharemp>)
- Finding the Set of Hyperparameters of Individual Bayesian Model
- 
          bound_bvhar()print(<boundbvharemp>)is.boundbvharemp()knit_print(<boundbvharemp>)experimental
- Setting Empirical Bayes Optimization Bounds
- 
          choose_bayes()experimental
- Finding the Set of Hyperparameters of Bayesian Model
- 
          FPE()
- Final Prediction Error Criterion
- 
          HQ()
- Hannan-Quinn Criterion
- 
          choose_var()
- Choose the Best VAR based on Information Criteria
- 
          compute_dic()
- Deviance Information Criterion of Multivariate Time Series Model
- 
          autoplot(<normaliw>)
- Residual Plot for Minnesota Prior VAR Model
- 
          autoplot(<summary.normaliw>)
- Density Plot for Minnesota Prior VAR Model
- 
          autoplot(<predbvhar>)autolayer(<predbvhar>)
- Plot Forecast Result
- 
          geom_eval()
- Adding Test Data Layer
- 
          gg_loss()
- Compare Lists of Models
- 
          autoplot(<bvharirf>)
- Plot Impulse Responses
- 
          autoplot(<bvharsp>)
- Plot the Result of BVAR and BVHAR MCMC
- 
          autoplot(<summary.bvharsp>)
- Plot the Heatmap of SSVS Coefficients
- 
          autoplot(<bvhardynsp>)
- Dynamic Spillover Indices Plot
- 
          sim_var()
- Generate Multivariate Time Series Process Following VAR(p)
- 
          sim_vhar()
- Generate Multivariate Time Series Process Following VAR(p)
- 
          sim_mncoef()
- Generate Minnesota BVAR Parameters
- 
          sim_mnvhar_coef()
- Generate Minnesota BVAR Parameters
- 
          sim_mnormal()
- Generate Multivariate Normal Random Vector
- 
          sim_matgaussian()
- Generate Matrix Normal Random Matrix
- 
          sim_iw()
- Generate Inverse-Wishart Random Matrix
- 
          sim_mniw()
- Generate Normal-IW Random Family
- 
          sim_mvt()
- Generate Multivariate t Random Vector
- 
          etf_vix
- CBOE ETF Volatility Index Dataset
- 
          stableroot()
- Roots of characteristic polynomial
- 
          is.stable()
- Stability of the process
- 
          coef(<varlse>)coef(<vharlse>)coef(<bvarmn>)coef(<bvarflat>)coef(<bvharmn>)coef(<bvharsp>)coef(<summary.bvharsp>)
- Coefficient Matrix of Multivariate Time Series Models
- 
          residuals(<varlse>)residuals(<vharlse>)residuals(<bvarmn>)residuals(<bvarflat>)residuals(<bvharmn>)
- Residual Matrix from Multivariate Time Series Models
- 
          fitted(<varlse>)fitted(<vharlse>)fitted(<bvarmn>)fitted(<bvarflat>)fitted(<bvharmn>)
- Fitted Matrix from Multivariate Time Series Models