This function generates multivariate time series dataset that follows VAR(p).
Arguments
- num_sim
Number to generated process
- num_burn
Number of burn-in
- vhar_coef
VAR coefficient. The format should be the same as the output of
coef()
fromvar_lm()
- week
Weekly order of VHAR. By default,
5
.- month
Weekly order of VHAR. By default,
22
.- sig_error
Variance matrix of the error term. By default,
diag(dim)
.- init
Initial y1, ..., yp matrix to simulate VAR model. Try
matrix(0L, nrow = month, ncol = dim)
.- method
Method to compute \(\Sigma^{1/2}\). Choose between
eigen
(spectral decomposition) andchol
(cholesky decomposition). By default,eigen
.- process
Process to generate error term.
gaussian
: Normal distribution (default) orstudent
: Multivariate t-distribution.- t_param
Details
Let \(M\) be the month order, e.g. \(M = 22\).
Generate \(\epsilon_1, \epsilon_n \sim N(0, \Sigma)\)
For i = 1, ... n, $$y_{M + i} = (y_{M + i - 1}^T, \ldots, y_i^T, 1)^T C_{HAR}^T \Phi + \epsilon_i$$
Then the output is \((y_{M + 1}, \ldots, y_{n + M})^T\)
For i = 1, ... n, $$y_{p + i} = (y_{p + i - 1}^T, \ldots, y_i^T, 1)^T B + \epsilon_i$$
Then the output is \((y_{p + 1}, \ldots, y_{n + p})^T\)
Initial values might be set to be zero vector or \((I_m - A_1 - \cdots - A_p)^{-1} c\).