This function generates multivariate time series dataset that follows VAR(p).
Arguments
- num_sim
Number to generated process
- num_burn
Number of burn-in
- var_coef
VAR coefficient. The format should be the same as the output of
coef()
fromvar_lm()
- var_lag
Lag of VAR
- sig_error
Variance matrix of the error term. By default,
diag(dim)
.- init
Initial y1, ..., yp matrix to simulate VAR model. Try
matrix(0L, nrow = var_lag, ncol = dim)
.- method
Method to compute \(\Sigma^{1/2}\). Choose between
eigen
(spectral decomposition) andchol
(cholesky decomposition). By default,eigen
.- process
Process to generate error term.
gaussian
: Normal distribution (default) orstudent
: Multivariate t-distribution.- t_param