Out-of-sample Forecasting based on Rolling Window
Source:R/summary-forecast.R
, R/print-forecast.R
, R/member.R
forecast_roll.Rd
This function conducts rolling window forecasting.
Usage
forecast_roll(object, n_ahead, y_test, num_thread = 1, ...)
# S3 method for class 'bvharcv'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.bvharcv(x)
# S3 method for class 'bvharcv'
knit_print(x, ...)
# S3 method for class 'olsmod'
forecast_roll(object, n_ahead, y_test, num_thread = 1, ...)
# S3 method for class 'normaliw'
forecast_roll(object, n_ahead, y_test, num_thread = 1, use_fit = TRUE, ...)
# S3 method for class 'ldltmod'
forecast_roll(
object,
n_ahead,
y_test,
num_thread = 1,
level = 0.05,
sparse = FALSE,
lpl = FALSE,
use_fit = TRUE,
...
)
# S3 method for class 'svmod'
forecast_roll(
object,
n_ahead,
y_test,
num_thread = 1,
level = 0.05,
use_sv = TRUE,
sparse = FALSE,
lpl = FALSE,
use_fit = TRUE,
...
)
Arguments
- object
Model object
- n_ahead
Step to forecast in rolling window scheme
- y_test
Test data to be compared. Use
divide_ts()
if you don't have separate evaluation dataset.- num_thread
- ...
not used
- x
bvharcv
object- digits
digit option to print
- use_fit
- level
Specify alpha of confidence interval level 100(1 - alpha) percentage. By default, .05.
- sparse
- lpl
- use_sv
Use SV term
Value
predbvhar_roll
class