Skip to contents

Compute HQ of VAR(p), VHAR, BVAR(p), and BVHAR

Usage

HQ(object, ...)

# S3 method for class 'logLik'
HQ(object, ...)

# S3 method for class 'varlse'
HQ(object, ...)

# S3 method for class 'vharlse'
HQ(object, ...)

# S3 method for class 'bvarmn'
HQ(object, ...)

# S3 method for class 'bvarflat'
HQ(object, ...)

# S3 method for class 'bvharmn'
HQ(object, ...)

Arguments

object

A logLik object or Model fit

...

not used

Value

HQ value.

Details

The formula is

$$HQ = -2 \log p(y \mid \hat\theta) + k \log\log(T)$$

which can be computed by AIC(object, ..., k = 2 * log(log(nobs(object)))) with stats::AIC().

Let \(\tilde{\Sigma}_e\) be the MLE and let \(\hat{\Sigma}_e\) be the unbiased estimator (covmat) for \(\Sigma_e\). Note that

$$\tilde{\Sigma}_e = \frac{n - k}{T} \hat{\Sigma}_e$$

Then

$$HQ(p) = \log \det \Sigma_e + \frac{2 \log \log n}{n}(\text{number of freely estimated parameters})$$

where the number of freely estimated parameters is \(pm^2\).

References

Hannan, E.J. and Quinn, B.G. (1979). The Determination of the Order of an Autoregression. Journal of the Royal Statistical Society: Series B (Methodological), 41: 190-195.

Hannan, E.J. and Quinn, B.G. (1979). The Determination of the Order of an Autoregression. Journal of the Royal Statistical Society: Series B (Methodological), 41: 190-195.

Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.

Quinn, B.G. (1980). Order Determination for a Multivariate Autoregression. Journal of the Royal Statistical Society: Series B (Methodological), 42: 182-185.