Skip to contents

This function computes FDR (false discovery rate) and FNR (false negative rate) for sparse element of the true coefficients given threshold.

Usage

confusion(x, y, ...)

# S3 method for class 'summary.bvharsp'
confusion(x, y, truth_thr = 0, ...)

Arguments

x

summary.bvharsp object.

y

True inclusion variable.

...

not used

truth_thr

Threshold value when using non-sparse true coefficient matrix. By default, 0 for sparse matrix.

Value

Confusion table as following.

True-estimatePositive (0)Negative (1)
Positive (0)TPFN
Negative (1)FPTN

Details

When using this function, the true coefficient matrix \(\Phi\) should be sparse.

In this confusion matrix, positive (0) means sparsity. FP is false positive, and TP is true positive. FN is false negative, and FN is false negative.

References

Bai, R., & Ghosh, M. (2018). High-dimensional multivariate posterior consistency under global-local shrinkage priors. Journal of Multivariate Analysis, 167, 157-170.