This function samples \(GIG(\lambda, \psi, \chi)\) random variates.
     
    
    Usage
    sim_gig(num_sim, lambda, psi, chi)
 
    
    Arguments
- num_sim
- Number to generate 
- lambda
- Index of modified Bessel function of third kind. 
- psi
- Second parameter of GIG. Should be positive. 
- chi
- Third parameter of GIG. Should be positive. 
 
    
    Details
    The density of \(GIG(\lambda, \psi, \chi)\) considered here is as follows.
$$f(x) = \frac{(\psi / \chi)^(\lambda / 2)}{2 K_{\lambda}(\sqrt{\psi \chi})} x^{\lambda - 1} \exp(-\frac{1}{2} (\frac{\chi}{x} + \psi x))$$
where \(x > 0\).
     
    
    References
    Hörmann, W., Leydold, J. Generating generalized inverse Gaussian random variates. Stat Comput 24, 547-557 (2014).
Leydold, J, Hörmann, W.. GIGrvg: Random Variate Generator for the GIG Distribution. R package version 0.8 (2023).