Choose the Hyperparameters Set of SSVS-VAR using a Default Semiautomatic Approach
Source:R/tuning.R
choose_ssvs.Rd
This function chooses \((\tau_{0i}, \tau_{1i})\) and \((\kappa_{0i}, \kappa_{1i})\) using a default semiautomatic approach.
Arguments
- y
Time series data of which columns indicate the variables.
- ord
Order for VAR or VHAR.
- type
Model type (Default:
VAR
orVHAR
).- param
Preselected constants \(c_0 << c_1\). By default,
0.1
and10
(See Details).- include_mean
Add constant term (Default:
TRUE
) or not (FALSE
).- gamma_param
Parameters (shape, rate) for Gamma distribution. This is for the output.
- mean_non
Prior mean of unrestricted coefficients. This is for the output.
- sd_non
Standard deviance of unrestricted coefficients. This is for the output.
Details
Instead of using subjective values of \((\tau_{0i}, \tau_{1i})\), we can use $$\tau_{ki} = c_k \hat{VAR(OLS)}$$ It must be \(c_0 << c_1\).
In case of \((\omega_{0ij}, \omega_{1ij})\), $$\omega_{kij} = c_k = \hat{VAR(OLS)}$$ similarly.
References
George, E. I., & McCulloch, R. E. (1993). Variable Selection via Gibbs Sampling. Journal of the American Statistical Association, 88(423), 881-889.
George, E. I., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553-580.
Koop, G., & Korobilis, D. (2009). Bayesian Multivariate Time Series Methods for Empirical Macroeconomics. Foundations and Trends® in Econometrics, 3(4), 267-358.