This function fits VHAR-SV.
It can have Minnesota, SSVS, and Horseshoe prior.
This function is deprecated. Use
vhar_bayes() with cov_spec = set_sv() option.
Usage
bvhar_sv(
y,
har = c(5, 22),
num_chains = 1,
num_iter = 1000,
num_burn = floor(num_iter/2),
thinning = 1,
bayes_spec = set_bvhar(),
sv_spec = set_sv(),
intercept = set_intercept(),
include_mean = TRUE,
minnesota = c("longrun", "short", "no"),
save_init = FALSE,
convergence = NULL,
verbose = FALSE,
num_thread = 1
)
# S3 method for class 'bvharsv'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
# S3 method for class 'bvharsv'
knit_print(x, ...)Arguments
- y
Time series data of which columns indicate the variables
- har
Numeric vector for weekly and monthly order. By default,
c(5, 22).- num_chains
Number of MCMC chains
- num_iter
MCMC iteration number
- num_burn
Number of burn-in (warm-up). Half of the iteration is the default choice.
- thinning
Thinning every thinning-th iteration
- bayes_spec
A BVHAR model specification by
set_bvhar()(default)set_weight_bvhar(),set_ssvs(), orset_horseshoe().- sv_spec
SV specification by
set_sv().- intercept
Prior for the constant term by
set_intercept().- include_mean
Add constant term (Default:
TRUE) or not (FALSE)- minnesota
Apply cross-variable shrinkage structure (Minnesota-way). Two type:
shorttype andlongrun(default) type. You can also setno.- save_init
Save every record starting from the initial values (
TRUE). By default, exclude the initial values in the record (FALSE), even whennum_burn = 0andthinning = 1. Ifnum_burn > 0orthinning != 1, this option is ignored.- convergence
Convergence threshold for rhat < convergence. By default,
NULLwhich means no warning.- verbose
Print the progress bar in the console. By default,
FALSE.- num_thread
Number of threads
- x
bvarsvobject- digits
digit option to print
- ...
not used
Value
bvhar_sv() returns an object named bvharsv class. It is a list with the following components:
- coefficients
Posterior mean of coefficients.
- chol_posterior
Posterior mean of contemporaneous effects.
- param
Every set of MCMC trace.
- param_names
Name of every parameter.
- group
Indicators for group.
- num_group
Number of groups.
- df
Numer of Coefficients:
3m + 1or3m- p
3 (The number of terms. It contains this element for usage in other functions.)
- week
Order for weekly term
- month
Order for monthly term
- m
Dimension of the data
- obs
Sample size used when training =
totobs-p- totobs
Total number of the observation
- call
Matched call
- process
Description of the model, e.g.
VHAR_SSVS_SV,VHAR_Horseshoe_SV, orVHAR_minnesota-part_SV- type
include constant term (
const) or not (none)- spec
Coefficients prior specification
- sv
log volatility prior specification
- init
Initial values
- intercept
Intercept prior specification
- chain
The numer of chains
- iter
Total iterations
- burn
Burn-in
- thin
Thinning
- HARtrans
VHAR linear transformation matrix
- y0
\(Y_0\)
- design
\(X_0\)
- y
Raw input
If it is SSVS or Horseshoe:
- pip
Posterior inclusion probabilities.
