Reference
VAR
Vector autoregressive model
| VarOls | OLS for Vector autoregressive model | 
| VarBayes | Bayesian Vector Autoregressive Model | 
VHAR
Vector heterogeneous autoregressive model
| VharOls | OLS for Vector heterogeneous autoregressive model | 
| VharBayes | Bayesian Vector Autoregressive Model | 
Priors
Prior configuration
| SsvsConfig | SSVS prior configuration | 
| HorseshoeConfig | Horseshoe prior configuration | 
| MinnesotaConfig | Minnesota prior configuration | 
| LambdaConfig | Hierarchical structure of Minnesota prior | 
| NgConfig | Normal-Gamma prior configuration | 
| DlConfig | Dirichlet-Laplace prior configuration | 
| LdltConfig | Prior for Covariance Matrix | 
| SvConfig | |
| InterceptConfig | Prior for Constant term | 
Random
Random generation functions
| normal.generate_mnormal | generate_mnormal(arg0: typing.SupportsInt, arg1: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, “[m, 1]”], arg2: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, “[m, n]”], arg3: typing.SupportsInt, arg4: typing.SupportsInt) -> typing.Annotated[numpy.typing.NDArray[numpy.float64], “[m, n]”] | 
Datasets
Datasets
| load_vix | Load and return the CBOE VIX of several ETF datasets | 
Utility functions
Related to configuration
| checkomp.is_omp | is_omp() -> bool | 
| checkomp.check_omp | check_omp() -> None |