We introduce Self-Organizing Map-based Anomaly Detector (SOMAD), an anomaly detection framework based on a novel test statistic, SomAnomaly, for Cyber-Physical System (CPS) security. Upon evaluation on two popular CPS datasets, we demonstrate that SOMAD outperforms baseline approaches through online multiple testing, using Time-Series Aware Precision and Recall (TaPR) metrics. Accordingly, we empirically demonstrate that forecasting error patterns of raw CPS data can be useful when detecting anomalies through a fast, statistical multiple testing approach such as ours.
in Session 11: Machine Learning for Security (06-24 11:00 CEST - 13:00 CEST).