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Attacks on CPSs

‚ Cyber-Physical Systems (CPSs) are susceptible to various
types of anomalies

1 Attacks on controllers, networks, or cyber-physical elements
2 Hardware failures, operator errors, and software

misconfigurations
‚ Anomaly detection in CPS

1 Actual anomalies
2 Glitches
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Setting

‚ Two periods of data
1 Training dataset (normal): Since CPS hardly collect anomalous

observation, we only train on the normal pattern data
2 Test dataset (normal + anomaly): observations will be

updated in real-time
‚ After training a model using training set,
‚ our goal is to detect contextual anomalies in the test period

using the trained model in real time
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Out-of-Limit (OOL) Threshold

1 Rule-based or statistical machine learning-based forecasting
model from the given training data [Giraldo et al., 2018,
Filonov et al., 2017, Kim et al., 2019]

2 Anomaly score is computed from the forecasting error (FE)
3 The observation is considered anomalous if the score exceeds

the anomaly score (OOL threshold)
‚ Static threshold: p-norm [Filonov et al., 2016,

Filonov et al., 2017, Kim et al., 2019]
‚ Cumulative sum (CUSUM) method [Goh et al., 2017]: divide

the time series into the fixed window intervals and computes
the sum of the p-norm
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Contribution

‚ Novel Self-Organizing Map-based anomaly detection
framework

‚ Detect well unseen anomalies in high-dimensional CPS data in
real-time

‚ Conduct experiments on benchmark CPS datasets:
SWaT [Goh et al., 2016] and HAI [Shin et al., 2020]

‚ Experiments show average 36% increase in the time
series-aware F1 score compared to those of baseline
approaches (static threshold and CUSUM method)
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Self-Organizing Maps (SOM)

‚ By [Kohonen, 1982]
‚ Artificial Neural Network

structure that only needs
computing distances

‚ SOM maps observations to
topological maps with finite
number of prototypes called
Kohonen neurons (SOM grids)

‚ Each grid has its own vector
called the codebook in the
input space

(a) Points projected to each
prototype [Hastie et al., 2009]

(b) Wiremesh representation [Hastie et al., 2009]
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Lindeberg-Feller Theorem
‚ Apply Central Limit Theorem (CLT) to provide a statistical

foundation for setting the anomaly threshold
‚ Triangular array of random variables tXnju

n
j=1

‚ Xnj independent for each n
‚ E [Xnj ] = 0, Var [Xnj ] = σ2

nj ă 8

‚ Let Zn =
řn

j=1 Xnj and B2
n =

řn
j=1 σ

2
nj

‚ Lindeberg-Feller theorem [Lindeberg, 1922, Ferguson, 1996]
‚ Generalization of CLT
‚ Lindeberg condition: for every ε ą 0,

1

B2
n

n
ÿ

j=1

E
[
X2

nj I (|Xnj | ě εBn)
]

Ñ 0

‚ Lindeberg-Feller theorem: weakly convergence
Zn
Bn

D
Ñ N (0, 1)
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Overall Pipeline

(3) Multiple testing in real-time 

w1 w2 w3

Training Time series

SOM Codebook 
Matrices

3D-Tensor Generalized
?-investingSom 

Anomaly

Som 
Anomaly

Test Time series

(2) Training SOM(1) Pre-processing

Test window

Distance

Calculate
Distance

1 Pre-processing
2 Training the SOM
3 SomAnomaly statistic for multiple testing
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3D Tensor Input

Given Error data (p-dimensional
time series with sample size n)

1 Slide the window of size w
with a shift size s

2 Combine the windows into a
3D tensor of size m ˆ w ˆ p,
where m = n´w

s + 1

Pre-processing Multivariate Time Series
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SOM for the Matrix

‚ The error pattern data is extended from a vector to a matrix
‚ For matrix computation, we consider the Frobenius norm
‚ and corresponding distance function between

A = (αjk),B = (βjk) P Rwˆp

d(A,B) =

ÿ

j,k
(αjk ´ βjk)

2

1/2

‚ Replace distance function in the incremental SOM algorithm
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Incremental SOM training algorithm using 3D tensor
Data: 3D tensor for error [X1, . . . ,Xm] P Rmˆwˆp

Input: SOM parameters
1 Initialize learning rate and radius
2 Initialize codebook matrices
3 Compute the distance rc ´ ri between nodes c and i in the SOM space
4 for j Ð 1 to N do
5 Randomly choose an input observation
6 for j Ð 1 to N do
7 if rc ´ rj ď σ(t) then
8 Update the neighboring node of BMU by

Wj(t + 1) = Wj(t) + α(t)h(rc ´ rj)[X(t) ´ Wj(t)]

9 end
10 Decay α(t) and σ(t)
11 end
12 end

Output: Wj(u), j = 1, 2, . . . ,N
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Output of SOM

‚ Training process of SOM maps each
normal pattern window onto the SOM
grids by finding the closest
corresponding codebook matrix

‚ The number of grids is finite
‚ Normal pattern is discretized
‚ Training error window maps onto

finite prototypes, each of which has
its own codebook matrix

‚ Normal error patterns are discretized
by the patterns represented by the
codebook matrices

Discretized Pattern in SOM Grid
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Motivation

‚ Test dataset to detect anomalies
‚ Online dataset
‚ Construct a window whenever a new

set of samples of size w is available
(streaming window)

‚ If the distance between codebook
matrices and the test error pattern is
large, then that pattern can be
anomaly

‚ In what criterion?
‚ Hypothesis testing

Motivation
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Notation

tDti ; t = 1, . . . , i = 1, . . . ,Nu: distance

‚ mutually independent for each t
‚ µi , σ2i : True mean and variance of

each node i
‚ Need to know µi and σ2

i to build
test statistic

‚ Since the training set consists only
of normal observations, we treat
the training set as a
pseudo-population

‚ µ̃1, . . . , µ̃N and σ̃21, . . . σ̃2N
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Hypothesis Testing

‚ Pseudo-mean and variance:

µ̃ =
1

N

N
ÿ

i=1

µ̃i , σ̃2 =
1

N

N
ÿ

i=1

σ̃2i

‚ For t = 1, 2, . . . ,

H0t :
1

N

N
ÿ

i=1

µi = µ̃ vs. H1t :
1

N

N
ÿ

i=1

µi ą µ̃

‚ Rejecting the t-th null hypothesis H0t corresponds to marking
the t-th window as anomalous
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SomAnomaly Statistic

‚ Sample mean of tDtiu
N
i=1: Dt =

1
N

řN
i=1 Dti

‚ Based on the mutual independence assumption of tDtiu
N
i=1,

employ the Lindeberg-Feller CLT [Lindeberg, 1922]

Definition (SomAnomaly Statistic)

St =
1

BN

N
ÿ

i=1

(Dti ´ µ̃i) =
N(Dt ´ µ̃)

BN

where B2
N =

N
ř

i=1
σ2i , for each t-th test.
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Multiple Testing

‚ Under some assumptions, Linderberg-Feller
CLT [Lindeberg, 1922]

‚ SomAnomaly St weakly converges to standard nomral
distribution under the corresponding null hypothesis

‚ p-value for each t-th test:

Pt = Pr(Z ě st), Z „ N (0, 1)

‚ We can reject the null if Pt is smaller than the significance
level α (e.g. 0.05)

‚ If we compare Pt with usual α for every t, type I error or false
discovery rate [Benjamini and Hochberg, 1995] may increase
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Online Multiple Testing

‚ Since we have infinitely many multiple tests, we apply one of
many online muliple testing methods

‚ Generalized α-investing (GAI) [Aharoni and Rosset, 2014]
‚ It controls the marginal false discovery rate (mFDR) under the

significance level α [Foster and Stine, 2008]
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GAI using SomAnomaly
Data: Trained SOM on the normal tensor input data
Input: Window size, shift size, α, η, ρ

1 Initialize W (0) = αη
2 for t = 1, 2, . . . do
3 Compute SomAnomaly and its p-value Pt for the streaming window
4

φt =
1

10
W (t ´ 1)

5 Set αt such that φt
ρ = φt

αt
´ 1

6 Test t-th hypothesis as follows: Rt =

#

1 Pt ď αt

0 otherwise
7

ψt = min
(
φt
ρ

+ α,
φt
αt

+ α ´ 1

)

8
W (t + 1) = W (t) ´ φt + Rtψt

9 end
Output: Results of the tests tR1,R2, . . .u
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Modification of SomAnomaly

Discretized Pattern of Test Dataset

‚ Empirically, SOM maps streaming windows onto very small
number of grids due to its similar pattern

‚ Compute SomAnomaly for the non-empty grids
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Optimized SomAnomaly (Modification of SomAnomaly)

Definition (Optimized SomAnomaly Statistic)
Let v be the index of mapped nodes and B2

v =
ř

iPv σ
2
i .

S˚
t =

1

Bv

ÿ

iPv
(Dit ´ µ̃i)

‚ Experimentally, S˚
t seems better than St

‚ We refer to SomAnomaly as S˚
t
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CPS Datasets

1 Two benchmark datasets
‚ Secure water treatment (SWaT) [Goh et al., 2016]
‚ HIL-based augmented ICS (HAI) [Shin et al., 2020]

2 Three NN models
‚ Apply Sequence-to-Sequence (seq2seq) [Sutskever et al., 2014]

to SWaT, which was proposed by [Kim et al., 2019]
‚ Apply Mixture Density Networks (MDN) [Bishop, 1994] to

SWaT
‚ Apply Recurrent Neural Networks

(RNNs) [Rumelhart et al., 1986] to SWaT and HAI
3 Compute the error.
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Forecasting Error Data

Dataset/NN Forecasting model and CPS dataset
SWaT/seq2seq seq2seq for each station in SWaT [Kim et al., 2019]
SWaT/MDN MDN for each station in SWaT
SWaT/RNN RNN for 14 correlation groups in SWaT
HAI/RNN RNN for 14 correlation groups in HAI

Names of the Error Sets
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Time Series Performance Evaluation
‚ They give precision and recall as traditional evaluation

‚ Rather than comparing point-to-point,
‚ range-based evaluation
‚ Recall anomalies (or attack) in CPSs is range-based and our

goal is contextual anomaly
‚ Metrics

‚ TaPR [Hwang et al., 2019]1
‚ Detection scoring parameter: 0.001
‚ Weight for the detection score: 0.8
‚ Subsequent scoring parameter: 60

‚ TSAD [Tatbul et al., 2018]2
‚ Default setting in the Github repository

1https://github.com/saurf4ng/TaPR
2https://github.com/IntelLabs/TSAD-Evaluator
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TaPR-based recall (Re), precision (Pr), and F1 score

Method SWaT/seq2seq SWaT/MDN SWaT/RNN HAI/RNN
Re Pr F1 Re Pr F1 Re Pr F1 Re Pr F1

Static 0.44 0.45 0.45 0.63 0.40 0.49 0.78 0.64 0.70 0.87 0.76 0.81

CUSUM 0.58 0.70 0.63 0.64 0.56 0.59 0.79 0.59 0.67 0.71 0.52 0.60

SOMAD 0.65 0.94 0.77 0.94 0.81 0.87 0.76 0.93 0.84 0.88 0.79 0.83
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TSAD-based recall (Re), precision (Pr), and F1 score

Method SWaT/seq2seq SWaT/MDN SWaT/RNN HAI/RNN
Re Pr F1 Re Pr F1 Re Pr F1 Re Pr F1

Static 0.25 0.41 0.31 0.34 0.35 0.35 0.33 0.55 0.42 0.20 0.71 0.31

CUSUM 0.30 0.62 0.40 0.38 0.39 0.38 0.37 0.45 0.41 0.36 0.44 0.39

SOMAD 0.61 0.60 0.61 0.92 0.58 0.71 0.59 0.54 0.57 0.65 0.79 0.71
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Detection Plots for the First Station

(a) Static - SWaT/RNN (b) CUSUM - SWaT/RNN (c) SOMAD - SWaT/RNN

(d) Static - HAI/RNN (e) CUSUM - HAI/RNN (f) SOMAD - HAI/RNN

S˚
t worked: The size of SomAnomaly was similar to whether the

window is anomaly
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Locality Property of SOM

‚ SOMAD vs baseline approaches
‚ SWaT and HAI datasets contain

multiple clusters of consecutive
anomaly samples over time

‚ SOMAD is capable of detecting
clustered anomalies

‚ How?
‚ A time series prediction based on

SOM is characterized by
locality [Barreto, 2007]

‚ SOM step exerts clustering effect
‚ Lead to reduce false alarm rates

and consequently to enhanced
detection power

(a) CUSUM - SWaT/RNN

(b) SOMAD - SWaT/RNN

(c) SOMAD - HAI/RNN
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False Positivities

‚ SOM’s locality property is
readily reflected in our
anomaly detection task as well

‚ However, SOMAD incorrectly
classifies normal samples
(black in strip) as anomalies
(red line): after highlight

‚ This kind of performance loss
occurs due to long-term
dependency issue of
forecasting model

(a) CUSUM - SWaT/RNN

(b) SOMAD - SWaT/RNN

(c) SOMAD - HAI/RNN
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Conclusion

‚ While most of the prior work focused on improving the base
forecasting model itself, our research deals with the statistical
method for finding threshold with forecasting error values

‚ SOMAD inflates the differences between the respective FE
patterns of normal and abnormal events

‚ SOMAD outperforms conventional methods, achieving a high
detection rate without compromising precision
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Future Study

‚ Parameter selection
‚ In this work, we chose parameteters of SOM and GAI

empirically or from preliminary works
‚ Rolling window method only in the training dataset: Since

there is no anomaly, good detector should detect no anomaly
‚ Long-term forecasting

‚ Even MDN or seq2seq model becomes worse and worse as the
time point goes further from the training term

‚ Ad hoc solution: train NN model again using the data
aggregated with normal-detected

‚ Another test method
‚ e.g. Bayesian inference
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Questions and Answers

‚ Thanks!
‚ Q & A ��
‚ Github repository for our Python code:

https://github.com/ygeunkim/somanomaly
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