

Revitalizing Self-Organizing Map: Anomaly Detection using Forecasting Error Patterns

IFIP SEC 2021, 24 June 2021

Young Geun Kim¹ Jeong-Han Yun³ Siho Han² Hyoung Chun Kim³ Simon Woo²

¹Department of Statistics, Sungkyunkwan University, Seoul, South Korea

²Department of Applied Data Science, College of Computing and Informatics, Sungkyunkwan University, Suwon, South Korea

³The Affiliated Institute of ETRI, Daejeon, South Korea

- Cyber-Physical Systems (CPSs) are susceptible to various types of anomalies
 - 1 Attacks on controllers, networks, or cyber-physical elements
 - e Hardware failures, operator errors, and software misconfigurations
- Anomaly detection in CPS
 - Actual anomalies
 - Ø Glitches

- Two periods of data
 - **1** Training dataset (normal): Since CPS hardly collect anomalous observation, we only train on the normal pattern data
 - 2 Test dataset (normal + anomaly): observations will be updated in real-time
- After training a model using training set,
- our goal is to detect contextual anomalies in the test period using the trained model in real time

Out-of-Limit (OOL) Threshold

- Rule-based or statistical machine learning-based forecasting model from the given training data [Giraldo et al., 2018, Filonov et al., 2017, Kim et al., 2019]
- 2 Anomaly score is computed from the forecasting error (FE)
- **3** The observation is considered anomalous if the score exceeds the anomaly score (OOL threshold)
 - Static threshold: *p*-norm [Filonov et al., 2016, Filonov et al., 2017, Kim et al., 2019]
 - Cumulative sum (CUSUM) method [Goh et al., 2017]: divide the time series into the fixed window intervals and computes the sum of the *p*-norm

- Novel Self-Organizing Map-based anomaly detection framework
- Detect well unseen anomalies in high-dimensional CPS data in real-time
- Conduct experiments on benchmark CPS datasets: SWaT [Goh et al., 2016] and HAI [Shin et al., 2020]
- Experiments show average 36% increase in the time series-aware F_1 score compared to those of baseline approaches (static threshold and CUSUM method)

Self-Organizing Maps (SOM)

- By [Kohonen, 1982]
- Artificial Neural Network structure that only needs computing distances
- SOM maps observations to topological maps with finite number of prototypes called Kohonen neurons (SOM grids)
- Each grid has its own vector called the codebook in the input space

(a) Points projected to each prototype [Hastie et al., 2009]

(b) Wiremesh representation [Hastie et al., 2009]

Lindeberg-Feller Theorem

- Apply Central Limit Theorem (CLT) to provide a statistical foundation for setting the anomaly threshold
- Triangular array of random variables {X_{nj}}ⁿ_{i=1}
 - X_{nj} independent for each n

•
$$E[X_{nj}] = 0$$
, $Var[X_{nj}] = \sigma_{nj}^2 < \infty$

• Let
$$Z_n = \sum_{j=1}^n X_{nj}$$
 and $B_n^2 = \sum_{j=1}^n \sigma_{nj}^2$

- Lindeberg-Feller theorem [Lindeberg, 1922, Ferguson, 1996]
 - Generalization of CLT
 - Lindeberg condition: for every $\epsilon > 0$,

$$\frac{1}{B_n^2}\sum_{j=1}^n E\left[X_{nj}^2 I\left(|X_{nj}| \ge \epsilon B_n\right)\right] \to 0$$

• Lindeberg-Feller theorem: weakly convergence

$$\frac{Z_n}{B_n} \xrightarrow{\mathcal{D}} \mathcal{N}(0,1)$$

Overall Pipeline

- Pre-processing
- O Training the SOM
- SomAnomaly statistic for multiple testing

Given Error data (p-dimensional time series with sample size n)

- Slide the window of size w with a shift size s
- 2 Combine the windows into a 3D tensor of size $m \times w \times p$, where $m = \frac{n-w}{s} + 1$

Pre-processing Multivariate Time Series

- SOM for the Matrix ____
 - The error pattern data is extended from a vector to a matrix
 - For matrix computation, we consider the Frobenius norm
 - and corresponding distance function between $A = (\alpha_{jk}), B = (\beta_{jk}) \in \mathbb{R}^{w \times p}$

$$d(A,B) = \left(\sum_{j,k} (\alpha_{jk} - \beta_{jk})^2\right)^{1/2}$$

Replace distance function in the incremental SOM algorithm

Incremental SOM training algorithm using 3D tensor

```
Data: 3D tensor for error [X_1, \ldots, X_m] \in \mathbb{R}^{m \times w \times p}
   Input: SOM parameters
 1 Initialize learning rate and radius
 2 Initialize codebook matrices
 3 Compute the distance r_c - r_i between nodes c and i in the SOM space
 4 for i \leftarrow 1 to N do
       Randomly choose an input observation
 5
       for i \leftarrow 1 to N do
 6
           if r_c - r_i \leq \sigma(t) then
 7
               Update the neighboring node of BMU by
 8
                                    W_i(t+1) = W_i(t) + \alpha(t)h(r_c - r_i)[X(t) - W_i(t)]
           end
 g
           Decay \alpha(t) and \sigma(t)
10
       end
11
12 end
   Output: W_i(u), j = 1, 2, ..., N
```

Output of SOM

- Training process of SOM maps each normal pattern window onto the SOM grids by finding the closest corresponding codebook matrix
- The number of grids is finite
 - Normal pattern is discretized
 - Training error window maps onto finite prototypes, each of which has its own codebook matrix
 - Normal error patterns are discretized by the patterns represented by the codebook matrices

Discretized Pattern in SOM Grid

ifip

Motivation

Y.G. Kim et al., SOMAD, IFIP SEC 2021 Oslo

13/35

FIPSE

anomaly

- In what criterion?
- Hypothesis testing

Motivation

Conclusion

Test dataset to detect anomalies

large, then that pattern can be

Online dataset

Introduction

 Construct a window whenever a new set of samples of size w is available (streaming window)

SOMAD

Experiment

If the distance between codebook matrices and the test error pattern is

Notation

 $\{D_{ti}; t = 1, \dots, i = 1, \dots, N\}$: distance

- mutually independent for each t
- μ_i , σ_i^2 : True mean and variance of each node *i*
 - Need to know μ_i and σ_i^2 to build test statistic

 Since the training set consists only of normal observations, we treat the training set as a pseudo-population

•
$$\tilde{\mu}_1, \ldots, \tilde{\mu}_N$$
 and $\tilde{\sigma}_1^2, \ldots \tilde{\sigma}_N^2$

Hypothesis Testing

• Pseudo-mean and variance:

$$\tilde{\mu} = \frac{1}{N} \sum_{i=1}^{N} \tilde{\mu}_i, \quad \tilde{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} \tilde{\sigma}_i^2$$

• For
$$t = 1, 2, ...,$$

$$H_{0t}: \frac{1}{N} \sum_{i=1}^{N} \mu_i = \tilde{\mu} \quad vs. \quad H_{1t}: \frac{1}{N} \sum_{i=1}^{N} \mu_i > \tilde{\mu}$$

• Rejecting the *t*-th null hypothesis *H*_{0t} corresponds to marking the *t*-th window as anomalous

SomAnomaly Statistic

- Sample mean of $\{D_{ti}\}_{i=1}^N$: $\overline{D}_t = \frac{1}{N} \sum_{i=1}^N D_{ti}$
- Based on the mutual independence assumption of {*D_{ti}*}^{*N*}_{*i*=1}, employ the Lindeberg-Feller CLT [Lindeberg, 1922]

Definition (SomAnomaly Statistic)

$$S_t = \frac{1}{B_N} \sum_{i=1}^N (D_{ti} - \tilde{\mu}_i) = \frac{N(\overline{D}_t - \tilde{\mu})}{B_N}$$

where
$$B_N^2 = \sum_{i=1}^N \sigma_i^2$$
, for each *t*-th test.

Multiple Testing

- Under some assumptions, Linderberg-Feller CLT [Lindeberg, 1922]
- SomAnomaly S_t weakly converges to standard nomral distribution under the corresponding null hypothesis
- p-value for each *t*-th test:

$$P_t = Pr(Z \ge s_t), \quad Z \sim \mathcal{N}(0, 1)$$

- We can reject the null if P_t is smaller than the significance level α (e.g. 0.05)
- If we compare P_t with usual α for every t, type I error or false discovery rate [Benjamini and Hochberg, 1995] may increase

- Since we have infinitely many multiple tests, we apply one of many online muliple testing methods
 - Generalized α -investing (GAI) [Aharoni and Rosset, 2014]
 - It controls the marginal false discovery rate (mFDR) under the significance level α [Foster and Stine, 2008]

PSEC

GAI using SomAnomaly

Data: Trained SOM on the normal tensor input data **Input:** Window size, shift size, α , η , ρ 1 Initialize $W(0) = \alpha \eta$ 2 for t = 1, 2, ... do Compute SomAnomaly and its p-value P_t for the streaming window 3 4 $\phi_t = \frac{1}{10}W(t-1)$ Set α_t such that $\frac{\phi_t}{a} = \frac{\phi_t}{\alpha_t} - 1$ 5 Test *t*-th hypothesis as follows: $R_t = \begin{cases} 1 & P_t \leq \alpha_t \\ 0 & \text{otherwise} \end{cases}$ 6 7 $\psi_t = \min\left(\frac{\phi_t}{\alpha} + \alpha, \frac{\phi_t}{\alpha_t} + \alpha - 1\right)$ 8 $W(t+1) = W(t) - \phi_t + R_t \psi_t$ 9 end **Output:** Results of the tests $\{R_1, R_2, \ldots\}$

SUNG KYUN KWAN

ifip

Modification of SomAnomaly

Discretized Pattern of Test Dataset

- Empirically, SOM maps streaming windows onto very small number of grids due to its similar pattern
- Compute SomAnomaly for the non-empty grids

Optimized SomAnomaly (Modification of SomAnomaly)

Definition (Optimized SomAnomaly Statistic)

Let v be the index of mapped nodes and $B_v^2 = \sum_{i \in v} \sigma_i^2$.

$$S_t^* = \frac{1}{B_v} \sum_{i \in v} \left(D_{it} - \tilde{\mu}_i \right)$$

- Experimentally, S_t^* seems better than S_t
- We refer to SomAnomaly as S_t^*

CPS Datasets

1 Two benchmark datasets

- Secure water treatment (SWaT) [Goh et al., 2016]
- HIL-based augmented ICS (HAI) [Shin et al., 2020]

O Three NN models

- Apply Sequence-to-Sequence (seq2seq) [Sutskever et al., 2014] to SWaT, which was proposed by [Kim et al., 2019]
- Apply Mixture Density Networks (MDN) [Bishop, 1994] to SWaT
- Apply Recurrent Neural Networks (RNNs) [Rumelhart et al., 1986] to SWaT and HAI

3 Compute the error.

Forecasting Error Data

Dataset/NN	Forecasting model and CPS dataset
SWaT/seq2seq	seq2seq for each station in SWaT [Kim et al., 2019]
SWaT/MDN	MDN for each station in SWaT
SWaT/RNN	RNN for 14 correlation groups in SWaT
HAI/RNN	RNN for 14 correlation groups in HAI

Names of the Error Sets

Time Series Performance Evaluation

- They give precision and recall as traditional evaluation
 - Rather than comparing point-to-point,
 - range-based evaluation
 - Recall anomalies (or attack) in CPSs is range-based and our goal is contextual anomaly
- Metrics
 - TaPR [Hwang et al., 2019]¹
 - Detection scoring parameter: 0.001
 - Weight for the detection score: 0.8
 - Subsequent scoring parameter: 60
 - TSAD [Tatbul et al., 2018]²
 - Default setting in the Github repository

¹https://github.com/saurf4ng/TaPR

²https://github.com/IntelLabs/TSAD-Evaluator

TaPR-based recall (Re), precision (Pr), and F_1 score

Method	SWaT/seq2seq			SWaT/MDN			SWaT/RNN			HAI/RNN		
	Re	Pr	F_1	Re	Pr	F_1	Re	Pr	F_1	Re	Pr	F_1
Static	0.44	0.45	0.45	0.63	0.40	0.49	0.78	0.64	0.70	0.87	0.76	0.81
CUSUM	0.58	0.70	0.63	0.64	0.56	0.59	0.79	0.59	0.67	0.71	0.52	0.60
SOMAD	0.65	0.94	0.77	0.94	0.81	0.87	0.76	0.93	0.84	0.88	0.79	0.83

TSAD-based recall (Re), precision (Pr), and F_1 score

Method	SWaT/seq2seq			SWaT/MDN			SWaT/RNN			HAI/RNN		
	Re	Pr	F_1	Re	Pr	F_1	Re	Pr	F_1	Re	Pr	F_1
Static	0.25	0.41	0.31	0.34	0.35	0.35	0.33	0.55	0.42	0.20	0.71	0.31
CUSUM	0.30	0.62	0.40	0.38	0.39	0.38	0.37	0.45	0.41	0.36	0.44	0.39
SOMAD	0.61	0.60	0.61	0.92	0.58	0.71	0.59	0.54	0.57	0.65	0.79	0.71

Detection Plots for the First Station

 S_t^* worked: The size of SomAnomaly was similar to whether the window is anomaly

SUNG KYUN KWAN UNIVERSITY(SKKU

FIPSEC

- SOMAD vs baseline approaches
 - SWaT and HAI datasets contain multiple clusters of consecutive anomaly samples over time
 - SOMAD is capable of detecting clustered anomalies
- How?
 - A time series prediction based on SOM is characterized by locality [Barreto, 2007]
 - SOM step exerts clustering effect
 - Lead to reduce false alarm rates and consequently to enhanced detection power

(c) SOMAD - HAI/RNN

ifip

False Positivities

- SOM's locality property is readily reflected in our anomaly detection task as well
- However, SOMAD incorrectly classifies normal samples (black in strip) as anomalies (red line): after highlight
- This kind of performance loss occurs due to long-term dependency issue of forecasting model

IFIPSEC

- While most of the prior work focused on improving the base forecasting model itself, our research deals with the statistical method for finding threshold with forecasting error values
- SOMAD inflates the differences between the respective FE patterns of normal and abnormal events
- SOMAD outperforms conventional methods, achieving a high detection rate without compromising precision

Future Study

- Parameter selection
 - In this work, we chose parameteters of SOM and GAI empirically or from preliminary works
 - Rolling window method only in the training dataset: Since there is no anomaly, good detector should detect no anomaly
- Long-term forecasting
 - Even MDN or seq2seq model becomes worse and worse as the time point goes further from the training term
 - Ad hoc solution: train NN model again using the data aggregated with normal-detected
- Another test method
 - e.g. Bayesian inference

Questions and Answers

- Thanks!
- Q & A 🖐
- Github repository for our Python code: https://github.com/ygeunkim/somanomaly

References I

- [Aharoni and Rosset, 2014] Aharoni, E. and Rosset, S. (2014). Generalized α-investing: definitions, optimality results and application to public databases. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(4):771-794.
- [Barreto, 2007] Barreto, G. A. (2007). Time series prediction with the self-organizing map: A review. Perspectives of neural-symbolic integration, pages 135–158.
- [Benjamini and Hochberg, 1995] Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal statistical society: series B* (*Methodological*), 57(1):289–300.
- [Bishop, 1994] Bishop, C. M. (1994). Mixture density networks.
- [Ferguson, 1996] Ferguson, T. S. (1996). A Course in Large Sample Theory. Kogan Page Publishers.
- [Filonov et al., 2017] Filonov, P., Kitashov, F., and Lavrentyev, A. (2017). RNN-based Early Cyber-Attack Detection for the Tennessee Eastman Process. CoRR.
- [Filonov et al., 2016] Filonov, P., Lavrentyev, A., and Vorontsov, A. (2016). Multivariate industrial time series with cyber-attack simulation: Fault detection using an lstm-based predictive data model. ArXiv, abs/1612.06676.
- [Foster and Stine, 2008] Foster, D. P. and Stine, R. A. (2008). α-investing: a procedure for sequential control of expected false discoveries. *Journal of the Royal Statistical Society Series B-Statistical Methodology*, 70(2):429–444.
- [Giraldo et al., 2018] Giraldo, J., Urbina, D., Cardenas, A., Valente, J., Faisal, M., Ruths, J., Tippenhauer, N. O., Sandberg, H., and Candell, R. (2018). A survey of physics-based attack detection in cyber-physical systems. ACM Computing Surveys (CSUR), 51(4):76.

IFIPSEC

References II

- [Goh et al., 2016] Goh, J., Adepu, S., Junejo, K. N., and Mathur, A. (2016). A Dataset to Support Research in the Design of Secure Water Treatment Systems. In *CRITIS*, pages 88–99, Cham. Springer International Publishing.
- [Goh et al., 2017] Goh, J., Adepu, S., Tan, M., and Lee, Z. S. (2017). Anomaly detection in cyber physical systems using recurrent neural networks. In 2017 IEEE 18th International Symposium on High Assurance Systems Engineering (HASE), pages 140–145. IEEE.
- [Hastie et al., 2009] Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer series in statistics. Springer.
- [Hwang et al., 2019] Hwang, W.-S., Yun, J.-H., Kim, J., and Kim, H. C. (2019). Time-series aware precision and recall for anomaly detection: Considering variety of detection result and addressing ambiguous labeling. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pages 2241–2244. ACM.
- [Kim et al., 2019] Kim, J., Yun, J.-H., and Kim, H. C. (2019). Anomaly detection for industrial control systems using sequence-to-sequence neural networks.
- [Kohonen, 1982] Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. *Biological cybernetics*, 43(1):59–69.
- [Lindeberg, 1922] Lindeberg, J. W. (1922). Eine neue herleitung des exponentialgesetzes in der wahrscheinlichkeitsrechnung. Mathematische Zeitschrift, 15(1):211–225.
- [Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-propagating errors. *nature*, 323(6088):533–536.

- [Shin et al., 2020] Shin, H.-K., Lee, W., Yun, J.-H., and Kim, H. (2020). HAI 1.0: Hil-based augmented ICS security dataset. In 13th USENIX Workshop on Cyber Security Experimentation and Test (CSET 20). USENIX Association.
- [Sutskever et al., 2014] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems, pages 3104–3112.
- [Tatbul et al., 2018] Tatbul, N., Lee, T. J., Zdonik, S., Alam, M., and Gottschlich, J. (2018). Precision and recall for time series. In Proceedings of the 32Nd International Conference on Neural Information Processing Systems, NIPS'18, pages 1924–1934, USA. Curran Associates Inc.

